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Abstract  
The COVID-19 epidemic has led to the widespread use of face masks in an 

effort to reduce disease transmission. Face masks may contribute to the 

severity of dry eye disease. Possible mechanisms have been proposed, 

including leakage of air from the superior edge of the mask, passing over the 

eyes. There may be other factors as well. 

There is a direct association between the salivary flow rate and the jaw 

muscle activity during speaking, chewing and mastication. There is also a 

positive association between dry mouth and dry eye. Agents that stimulate 

salivary gland secretions may concomitantly alleviate dry eye symptoms. 

This may provide a therapeutic opportunity that has not been explored in the 

past. Results of a recent experiment showed that chewing gum or candy 

alleviated dry eye. We hypothesize that chewing, mastication or speaking 

may have stimulated ocular lacrimation. We also suggest that impeded 

mandible jaw movement while wearing face masks may contribute to 

reduced lacrimation, leading to a worsening of dry eye disease. Face masks 

can additionally inhibit contagious yawning in community settings through 

impairment of both face recognition and emotion recognition and thereby 

can diminish yawning-mediated tear production. We discuss in this paper 

the role these mechanisms may play in the worsening of preexisting dry eye 

disease, as a result of face mask wearing. This may have implications for 

pharmaceutical and nutraceutical industries aiming to relieve dry eye and 

mouth and may provide ideas for improvements in face mask design that 

might reduce their impact jaw motion, and secondarily on dry eye disease. 

  

Keywords: COVID-19; dry eye; face mask; mandibular movement; facial 

nerve 

 

Introduction 

 
Ocular problems due to face mask use during COVID-19 pandemic were 

first reported by Moshirfar et al [1]. Regular face mask wearing is 

accompanied with an increase in dry eye symptoms among some people [2-

6] including contact lens wearers [2 ,7], negatively impacting visual quality. 

This phenomenon is especially important since it is expected that face mask 

use will continue for the foreseeable future. Many people including the 

young, are already at increased risk of dry eye disease because of increased 

screen time, as a result of the shift to online education [8], and other 

activities such as online shopping, web surfing and the use of mobile phones 

[9]. Since the beginning of the pandemic, people spend more time looking 

at screens which may exacerbate dry eye symptoms [5]. 

 

 

 

This study considered two chicken breeds commonly namely Fayoumi and 

Sasso. Fayoumi, a breed known for its hardiness and adaptability to harsh 

environmental conditions, typically produces smaller eggs with higher yolk 

content, making it well-suited for local consumption in areas where 

traditional breeds are preferred (El-Safty et al., 2010). On the other hand, 
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 Factors contributing to dry eye are not homogenous. Thus, it is 

important to elucidate the underlying mechanism(s) in order to 

determine the best strategy to prevent and/or alleviate dry eye 

symptoms. We categorized possible mechanisms by which use of 

face masks may negatively impact dry eye disease, which led to 

our complementary hypothesis regarding the various factors 

affecting this problem.  

 

Currently Proposed Explanations and Mechanisms: 

Mechanical Explanation:  

This explanation mainly focuses on poor fit of the mask or 

looseness of mask apposition against the face and nose, so that 

some airflow is directed towards the eyes. The face mask may also 

interfere with lubricating agents reaching the eyes, because of fears 

patients may have about potential contamination from hands and 

drug containers during mask wear [10]. Other mechanical 

ventilation factors may possibly intensify and exacerbate airflow 

effects as well. 

Recent experiments by Ding et al [11] (using infrared 

thermography with measurement of maximum interblink period 

and ocular surface temperature) support this hypothesis and 

provide a pathway by which faster tear evaporation leads to a faster 

onset of ocular discomfort and thereby shortens the amount of time 

one can refrain from blinking [12]. Enhanced tear evaporation 

leads to thinner localized areas of the tear film and thereby 

localized tear hyperosmolarity, which in turn activates the 

inflammation pathway associated with dry eye disease [13]. 

Inflammation then results in stimulation of polymodal and 

mechanonociceptor nerve endings and enhances activity of cold 

thermoreceptors to evoke sensations of ocular dryness and pain 

[11].  

This study [12] provides a mechanistic explanation of this concept. 

A similar mechanism was described by Hayirci et al [14] in the 

setting of continuous positive airway pressure for patients with 

obstructive sleep apnea syndrome. 

In nurses working in ICUs wearing sealed goggles during COVID-

19, dehydration has been proposed as a mechanism for Meibomian 

oil hardening and chalazion formation [15]. 

 

Eyelid/Ocular Microbiota Explanation: 

Just as the term microbiome or microbiota refers to all types of 

microorganisms present in or on the human body, the term ocular 

microbiota refers to all types of microorganisms present in or on 

the eyes. It has been shown that commensal microbiota play a 

critical and fundamental role in regulating host physiology, 

including the induction and development of the immune system 

and host defense mechanisms against the invasion of pathogens. In 

this regard, dysbiosis (referred as unbalanced microbiota) could 

lead to pathogenic microbial overgrowth and cause local or 

systemic inflammation [16]. The ocular surface is directly exposed 

to the outside environment, and can be affected by numerous 

pathogenic microorganisms [17].  

Meibomian glands located in the eyelids are in charge of secretion 

of oily components for the tear film to protect the ocular surface 

from overt dryness, discomfort, or damage. Dysfunction of 

Meibomian glands often leads to evaporative dry eye syndrome. 

Despite some inconsistencies in the literature, mostly due to 

technical issues, it has been shown that altered ocular microbial 

species can sometimes be associated with dry eye syndrome and 

dysfunction of Meibomian glands [18-20]. Corynebacterium, as 

ocular surface “resident microbiota”, is possibly associated with 

dry eye syndrome. However, it might be argued that alteration in 

the ocular surface microbiota may not be a cause, but rather it might 

be a corollary to ocular surface disorders.  

Chalazion development, though primarily caused by a non-

infectious obstruction of eyelid Meibomian glands, may also be 

associated with multiple specific bacterial isolates related to 

changes to the gut microbiome [21;22]. It is worth remembering 

that oral flora (including bacterial pathogens and normal flora) can 

easily be incorporated into expired droplets capable of reaching the 

ocular surface, while talking, sneezing, or coughing [23]. 

Therefore, as Silkiss et al [24] have nicely explained, mask wear 

can provide a funnel for enhanced bacterial exposure to the eyelids 

and cheeks, which in turn may promote inflammation. This is 

because an unbalanced ocular microbiota may lead to pathogenic 

microbial overgrowth, which may then cause local or systemic 

inflammation [17].  

Frequent hand washing or use of hygienic/alcoholic disinfectants 

drastically changes the microbiome of hands [25-27]. This might 

lead to facial, eyelid or ocular surface microbiota alterations during 

the COVID-19 pandemic. There is currently no direct empirical 

evidence to support this hypothesis. However, an altered skin 

surface or gut microbiota community might theoretically be 

transmitted to the face, cheeks and eyelids, because mask wearers 

frequently manipulate their masks. This, in turn, may increase the 

chances of transferring bacteria from the hands to the face.  

This is especially important in people who are already at increased 

risk of dry eye. In diseases such as Sjögren’s syndrome (SS), there 

is a combination of Meibomian gland dysfunction and dry eye 

syndrome, with changes in ocular surface microbiota [28-30]. An 

altered gut-eye-lacrimal gland-microbiome axis has been 

previously implicated in dry eye in SS [31]. It might be conjectured 

that in addition to altered ocular/facial microbiota, unbalanced gut 

microbiota due to obsessive hand washing and sanitizing/cleaning 

practices in the home, and more specifically in the kitchen, may be 

partially responsible for dry eye. This may exacerbate pre-existing 

dryness, caused by wearing a face mask. 

 

Causal Explanation: 

A recent systemic review by Nasiri et al [32] concluded that the 

mechanism of dry eye or foreign body sensation is unclear in 

COVID-19 patients and may not be directly associated with the 

SARS-CoV-2 virus. After an extensive search in PUBMED, 

SCOPUS and Scholar using the terms ʻdry eyeʼ, ʻCOVID-19ʼ, 

ʻSARSʼ, and ʻSARS-CoV-2ʼ, there was no record of a causal 

association between COVID-19 infection and dry eye. Below, we 

will summarize some very recent evidence to show that the 

possibility exists that damage to lacrimal and Meibomian glands 

may occur due to COVID-19. 

Recently, Grajewski et al [33] demonstrated the presence of 

angiotensin converting enzyme 2 (ACE2) expression in the 

conjunctiva by immunohistochemistry. This was previously shown 

to be present by Sungnak et al [34] on an RNA level. This was also 

observed in other pioneering studies, which demonstrated high 

expression of ACE2 mRNA in the conjunctiva and cornea of the 

human eye. [35;36]. A review of SARS-CoV-2-related English 

language articles from December 2019 through mid-April 2020 

found in online databases, has concluded that ACE2 receptors and 
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 their expression on the ocular mucosal surface may explain the 

development of conjunctivitis in COVID-19 patients, although it 

may go unnoticed due to its mild nature [37]. ACE2 expression has 

been reported in the lacrimal glands of animal models such as mice 

[38] and rhesus monkeys [39]. However so far, we are unaware of 

any human study that has reported the presence or absence of 

ACE2 expression or ACE2 receptors in lacrimal glands and/or 

Mebomian glands. Hong et al [40] studied 56 subjects before and 

after the development of COVID-19. It was found that 6 patients 

(11%) had ocular redness before the onset of respiratory symptoms. 

Scores on the OSDI (Ocular Surface Disease Index) and SEEQ 

(Salisbury Eye Evaluation Questionnaire) tests, both of which 

assess dry eye symptoms, were significantly worse after 

contracting COVID-19, even in patients without visible 

conjunctivitis. Similar studies confirm a worsening in ocular 

symptomatology following onset of COVID-19 in nearly all 

patients [41]. The worsening of dry eye symptoms in these patients 

suggests that the possibility of a direct causal association between 

COVID-19 infection and dry eye, via direct damage to the lacrimal 

and Meibomian glands. Conversely, healthy individuals without 

COVID-19 generally remain asymptomatic.  

Alternatively, it is possible that worsening of dry eye symptoms is 

mediated via salivary gland dysfunction caused by COVID-19. 

Recent evidence revealed ACE2 expression in human salivary 

glands, in patients reporting oral symptoms such as dry mouth and 

amblygeustia, due to damage to the salivary gland caused by the 

COVID19 [42]. There is evidence showing a direct anatomical 

association between salivary glands and lacrimal glands and that 

treatment of salivary hypofunction, improves dry eye symptoms 

[43-45]. Targeted AQP1 gene therapy of the submandibular glands 

in a murine model of SS not only improved salivary flow, but also 

lacrimal gland function [43], suggesting existence of a direct uni- 

or bilateral interaction between these two secretory glands. In fact, 

salivation improves lacrimal gland function in dry eyes. Upon 

stimulation, the seventh cranial nerve aids in the secretion of tears 

from the lacrimal glands and creates a sense of relief from mild 

dryness of the eyes [45]. The facial nerve contains fibers for both 

the lacrimal gland and the submandibular salivary gland. After the 

facial nerve passes through the geniculate ganglion, the 

parasympathetic secretomotor nerve fibers for the submandibular 

salivary gland travel with the main nerve trunk. The secretory 

nerve fibers for the lacrimal gland separate from the facial nerve to 

join the greater petrosal nerve. These secretory nerve fibers then 

pass through the sphenopalatine ganglion before innervating the 

lacrimal gland [44]. For a full anatomical description, see these 

references: [44;45]. Briefly, it there are evidences showing a direct 

damage to the lacrimal glands by the COVID-19 virus [46;47]. 

 

Novel Mechanism:  

There is a direct association between the salivary flow rate and jaw 

muscle activity during mastication [48-51], i.e., the higher the 

chewing rate, the higher the saliva secretion. There is also a 

positive association between dry mouth and dry eye in humans (in 

normal adults [52], in  subjects with and without symptoms of dry 

mouth and/or eyes, in patients with primary SS [53], in the elderly 

[54], and in patients with dry eye symptoms [55]).  

It is not surprising that agents that stimulate salivary gland 

secretions, such as pilocarpine [56] and cevimeline [57], stimulate 

lacrimal gland (and/or Meibomian gland) secretion and alleviate 

dry eye symptoms. However, it was surprising to find that simply 

chewing gum or candy also alleviated dry eye symptoms, without 

involvement of receptors, antagonist(s) or agonists(s). Higher 

salivary secretion brought about by chewing gum or candy led to 

significantly lower dry eye scores [58], with no drug-receptor 

interactions involved.  

In the only published trial with a double-blinded crossover design, 

Asakawa et al [58] evaluated eye dryness with the RT-7000 Auto 

Ref-Topographer and Tear Stability Analysis System (TSAS) 

(Tomey, Nagoya, Japan). Briefly, healthy participants 

experiencing eyestrain (n=46, 23 male and 23 female, 20-59 yrs 

old) were instructed to keep their eyes open for 10 seconds. 

Severity of eye dryness was then evaluated by measuring ring 

break-up time (RBUT). The RBUT was measured by analyzing 

break-up of the tear layer within a 6-mm radius of the center of the 

cornea and its deformation over time, and measuring the number 

of seconds required to reach the cut-off value of –0.5 D, in 

accordance with the algorithm provided by Tomey. Each 10-year 

age group cohort included 12 subjects, with the exception of the 

30s group, which included 10 subjects. A visual task was 

performed on reading material displayed on a computer screen at a 

fixed distance for 60 min. Participants were asked to chew gum or 

candy (two pieces for two 15-min periods) starting 15 and 45 min 

after starting to read. Subjects chewed gum on Day1 and candy on 

Day2, and vice versa. With regard to the visual analogue scale, 

there were no significant difference between scores of subjective 

eye fatigue between chewing gum and chewing candy (P = 0.397 

− P = 0.909). Those scores of eye heaviness and eye tiredness were 

significantly longer in duration before and after the visual task with 

candy (P = 0.013 and P = 0.025, respectively), but not with chewing 

gum. The changes of subjective accommodation were significantly 

lower after the visual task, after chewing candy or chewing gum (P 

= 0.043).  

Most importantly, before and after the visual task, the RBUT 

values showed a significant trend (i.e., 10.0 sec and 9.6 sec, 

respectively, P = 0.053) only with chewing gum but not with 

chewing candy (P = 0.132) 58. It is very important to note that 

participants were asked to chew gum or candy only for two 15-min 

periods, while in real-world setting; wearing a face mask lasts very 

long. 

Their experiment provides the first experimental evidence 

supporting our novel hypothesis that salivary secretion can (either 

directly or indirectly) enhance ocular secretions, possibly via a 

mechanism involving mandibular jaw movement. 

Wearing a face mask meanwhile can substantially impair the jaw 

movement during daily activities such as speaking, chewing, and 

swallowing [59;60]. For instance, normal yawning which is a 

physiological behavior could be deregulated due to the restriction 

of mandibular jaw movement by face mask wearing [59]. It worth 

to remind that tears can be described as of two types: reflex tears, 

which are induced by a range of stimuli (eg. yawning, as a very 

important stimulus), and basal tears, which are the non-stimulated 

lacrimation of the tear glands [61]. Yawning –i.e., powerful 

stretching of the mandible jaw– is contagious and can be both 

conscious and unconscious. Face masks can additionally inhibit 

contagious yawning in community settings through impairment of 

both face and emotion recognition [60;62;63] and thereby can 

diminish yawning-mediated tear production. It is also interesting 

that even self-induced yawning stimulates aqueous tear [64], and 
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 saliva production [65]. Most interestingly, during yawning, muscle 

sympathetic nerve activity is inhibited [66] and a marked increase 

of cerebral blood flow [67], and significant increase in blood flow 

through the ophthalmic veins occurs [68], all of which contribute 

to normal tear production.  

We use these facts to support the mechanism we propose: 

Decreased salivary flow rate and to a lesser extent, insufficient 

lower jaw movement due to the restriction of mandibular jaw 

movement by face mask wear, may represent a new mechanism by 

which dry eye is exacerbated in face mask wearers.  

 

Hypothetical Pathway: 

Chewing/mastication [69] and speaking [70;71] both of which are 

activities that entail mandible movement, increase cerebral blood 

flow (rCBF). Chewing also increases actions of the autonomic 

nervous system (sympathetic and parasympathetic nerves) [72-74]. 

Chewing gum also increases blood flow to the eyes and to the 

parasympathetic nerves which predominantly act to contract the 

iris sphincter muscle [58]. On the other hand, certain physical 

activities or psychological situations can alter patterns of rCBF. For 

example, walking [74], experiencing social phobia during stressful 

speaking tasks [75], and social phobia treated with citalopram or 

cognitive-behavioral therapy [76] differentially change the pattern 

of rCBF. An rCBF pattern of relatively enhanced cortical, as 

opposed to subcortical perfusion is seen in the nonphobic subjects, 

showing that cortical evaluative processes are taxed by public 

performance. Conversely, the social phobia symptom profile is 

associated with an altered cerebral blood flow, i.e., increased 

subcortical activity [75] which amazingly is similar to altered 

cerebral blood flow in patients with SS [77-80] in which dry eyes 

and dry mouth are clinical hallmarks [81;82]. Altered rCBF 

patterns are reported in patients with COVID-19 [83-87]. This may 

be due to a possible neuroinvasive action of SARS-CoV-2, or it 

may be a partial manifestation of an altered pattern of mandible 

movement, resulting from the wearing of a face mask.  

As for direct association between impaired jaw movement and dry 

eye, current evidence comes mainly from case series reports of 

patients with impaired jaw movement 88-90, which all share in the 

facial nerve impairment and hypofunction of lacrimal component 

of the nervus intermedius function [91]. 

There is currently no report to directly link facemask-induced dry 

eye with lacrimal gland aquaporins (AQPs) expression in humans, 

however, there is huge amount of evidence to establish this notion 

in submandibuar glands [92-95]. For instance, pigs fed with 

different dietary treatments –based on different grinding intensities 

and compactions of the same diet– showed significantly different 

AQP5 expression in mandibular gland, with highest AQP5 

expression in those fed with coarsely ground pelleted diets 

compared to other softer diets [92], clearly suggesting that higher 

jaw movement is positively associated to AQP5 expression in a rate 

dependent manner. In another recent experiment, Saito et al 

examined the impact of the decline and recovery of masticatory 

function on expression and localization of AQP5 in the Wistar rat 

submandibular salivary gland by inserting and removing an incisor 

bite plate. Attachment of incisor bite plate resulted in a decrease in 

the expression of AQP5. Alterations in the localization of AQP5 

were confirmed between two weeks and four weeks in the same 

rats. Conversely, alteration in the expression and localization of 

AQP5 were not seen in the recovery group. These findings suggest 

that a loss of molar occlusion and jaw movement decreases AQP5 

expression and alters its localization in the rat submandibular 

salivary gland. Interestingly, removal of the bite plate permitted the 

recovery of both AQP5 expression and its normal localization in 

the submandibular salivary glands [94].  

Thus, higher jaw movement is associated with higher AQP5 

expression in submandibular salivary glands [92-95]. It however 

remains to be explored whether face mask-induced dry eye is 

mediated via altered AQPs expressions in lacrimal glands.  

 

AQPs are a group of water channel proteins which mediate the 

passage of water molecules through membranes [96]. The 

Meibomian  and lacrimal glands are rich in AQPs [97-99]. Altered 

cerebral blood flow homeostasis results in dysfunction of AQPs 

both in the brain and secretory glands [13;100-104] which, like the 

lacrimal and Meibomian glands, are rich in AQPs. [105-107].  

 

There is empirical evidence supporting the hypothesis that these 

effects are eventually mediated by modulation of parasympathetic 

nerve and muscarinic receptors 108;109. See reviews [110;111]. In 

support of this conclusion, in a counterfactual reasoning model, the 

function of sympathetic and parasympathetic nerves during gum 

chewing is in harmony with autonomic nerves [112]. The 

submandibular gland AQP5 is degraded by parasympathetic 

denervation and is recovered by cevimeline, which is an M3 

muscarinic receptor agonist [113]. 

These observations could have deep implications regarding the 

effect of social distress and the limitation of physical activity 

brought about by the COVID-19 pandemic. Social phobia 

negatively impacts verbal communications, resulting in a further 

decrease in mandibular jaw movement, possibly adding to the 

problem of dry eye disease. 

 

Conclusions: 

We hypothesize that prolonged wearing of face masks might 

reduce movement of the mandible. Less frequent face-to-face 

verbal communication (pre-COVID-19 pandemic vs. post-

COVID-19), and possibly impeded yawning, might have further 

contributed to altered patterns of blood flow to the eyes and rCBF, 

due in part to social distress and physical confinement. This, in 

turn, may theoretically have affected modulation of 

parasympathetic nerve and muscarinic receptors through AQPs in 

the lacrimal and Meibomian glands. Face masks, meanwhile, can 

impair contagious yawning in community settings through 

impairing the performance of both face and emotion recognition 

and thereby can diminish yawning-mediated tear production. At 

present this remains a hypothesis that needs to be tested. 

 

Perspective and Suggestions for Future Studies: 

In order to come to a better understanding of how COVID-19 might 

affect dry eye disease, the possible interaction or modification 

effect between confounding variables should be considered in 

future studies. This might facilitate the discovery of better 

preventive measures and therapeutic agents for the management of 

dry eye symptoms experienced by patients suffering from this 

pandemic. As an example, a future study might look at whether 

higher rates of verbal communication by women as compared to 

men has an impact on the potential effect of face mask wearing on 

the development of dry eye disease, including the issues of proper 
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 versus improper mask fitment, and continuous versus intermittent 

mask wear. Another study might seek to compare different types 

of face masks such as surgical masks versus N95 masks, to see if 

the relative degree of leakage from the edge of the mask affects eye 

dryness. Retrospective data collection methods are subject to 

respondent memory bias, self-bias and self-rating bias. To diminish 

the memory bias in relation to dry eye, proper web-based registries 

or online surveys can be utilized. In this regard, there are validated 

questionnaires such as Standardized Patient Evaluation of Eye 

Dryness (SPEED) questionnaire, which can be used to evaluate the 

symptomatology of patients. The SPEED questionnaire could be 

compared to the more diffuse Ocular Surface Disease Index 

(OSDI) questionnaire [41]. The SPEED questionnaire can 

discriminate between asymptomatic and symptomatic individuals 

in relation to dry eye disease [114]. Occupational and prior health 

history, such as a history of prior refractive surgery, computer 

professionals with high levels of screen time, and history of 

systemic conditions such as SS, rheumatoid arthritis or symptoms 

of dry mouth should be explored. Milder cases can be handled over 

teleconsultation [115]. 

It would be interesting to look at dry eye prevalence in a number 

of categories, such as obsessive people who strictly quarantined at 

home (which may result in less or no use of a face mask, and 

reduced exposure to COVID-19), those with high levels of screen 

exposure, those with little or no viral exposure, and those who 

strictly observed face mask wearing protocols, versus those who 

did not. 

If it can be shown that COVID-19 adversely impacts ocular 

lacrimation, this might provide us with an explanation for the 

magnitude of dry eye disease seen during this pandemic, even 

among those with mild cases of COVID-19.  

Suggestions for Affected Patients: 

Individuals wearing a face mask should be instructed to blink more 

often and to avoid mask displacement or incorrect fitting, which 

might contribute to air leaking above the mask, increasing dry eye 

symptoms [116]. Mask designs that permit transparent and freer 

mandibular movement may also help in this regard. 
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