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Figure 2 : Thoracic CT scan with a large collection of dorsal 

subcutaneous soft tissues with infiltration of adjacent fat and an 

important subcutaneous emphysema 

 

Emergency surgical debridement was required. A full-thickness 

necrosis of the posterior chest wall was found, involving the skin, 

fascia, and muscle layers. The patient then benefited from a large 

necrosectomy exposing part of the trapezius and large dorsal  
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Abstract 
Background: According to preliminary sequences from 2010, 99.7% of the 

nucleotide sequences of the modern human and Neanderthal genomes are identical, 

compared to humans sharing around 98.8% of sequences with the chimpanzee. ... 

In contrast, the difference between chimpanzees and modern humans is 

approximately 1,462 mtDNA base pairs.  

Materials and Methods: Neanderthal-inherited genetic material is found in all 

non-African populations and was initially reported to comprise 1 to 4 percent of 

the genome. This fraction was later refined to 1.5 to 2.1 percent. We had gone 

through many researches of Neanderthals affected gene flow in humans.  

Results: It is estimated that 20 percent of Neanderthal DNA currently survives in 

modern humans. Modern human genes involved in making keratin, a protein 

constituent of skin, hair, and nails, have especially high levels of introgression. For 

example, approximately 66% of East Asians contain a POUF23L variant 

introgressed from Neanderthals, while 70% of Europeans possess an introgressed 

allele of BNC2. Our finding shines a light on an enzyme called dipeptidyl 

peptidase-4 (DPP4). Scientists already know the protein allows another 

coronavirus, which causes Middle Eastern respiratory syndrome (MERS), to bind 

to and enter human cells. The new analysis, of DPP4 gene variants among COVID-

19 patients, suggests the enzyme also provides SARS-CoV-2 with a second door 

into our cells, along with its usual infection route via the angiotensin-converting 

enzyme 2 (ACE2) receptor on cell surfaces. Conclusion: Most Europeans, Asians, 

and Native Americans harbor a handful of genes from Neanderthals, up 1.8% to 

2.6% of their DNA. Studies of ancient DNA in Neanderthal fossils have shown the 

hominin's DPP4 gene subtly differs from the typical human one.  

Conclusion: The hominin's DPP4 gene inherited from Neanderthals plays a major 

role in Immune System Disorders and Lower Immune response in many diseases. 

This gene plays a major role in affecting humans with COVID-19 and spreading it 

through the world. All humans contain this gene from 1 to 4 percent. East Asians, 

Europeans, Middle and south Americans conveys more, hence; native Africans 

contain less amounts of hominin's DPP4 gene. Therefore; East Asians, Europeans, 

Middle and south Americans are prone to severe COVID-19. 

Key Words: Neanderthals; hominin's DPP4 gene; DNA Viruses; RNA Viruses; 

COVID-19 

 

Introduction 
Neanderthal ancient DNA  

Genetic studies on Neanderthal ancient DNA became possible in the late 1990s. 

[2] The Neanderthal genome project, established in 2006, presented the first fully 

sequenced Neanderthal genome in 2013. Since 2005, evidence for the substantial 

admixture of Neanderthals DNA in modern populations has accumulated. [3] The 

divergence time between the Neanderthal and modern human lineages is estimated 

at between 750,000 and 400,000 years ago. The more recent time depth has been 

suggested by Endicott et al. (2010) [4] and Rieux et al. (2014) [5] A significantly 

deeper time of separation, combined with repeated early admixture events, was 

calculated by Rogers et al. (2017). [6]. On July 3, 2020, a team reported finding 

that a major genetic risk factor of the Covid-19 virus was inherited from archaic 

Neanderthals 60,000 years ago. [7-8] 
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that a major genetic risk factor of the Covid-19 virus was inherited 

from archaic Neanderthals 60,000 years ago. [7-8] 

 

COVID-19 
 

SARS-CoV-19 which is better called COVID-21, are a group of 

viruses that cause diseases in mammals and birds. In humans, the 

beginning of Coronaviruses in 1919 causes respiratory tract 

infections that are typically mild, such as some cases of the 

common cold. Rarer forms can be lethal, such as SARS, MERS, 

and COVID-19. Symptoms vary in other species: in chickens, 

they cause an upper respiratory tract disease, while in cows and 

pigs they cause diarrhea. Coronaviruses constitute the subfamily 

Orthocoronavirinae, The genome size, coronaviruses ranges from 

approximately 27 to 34 kilobases, the largest among known RNA 

viruses. In recent months, COVID-19 has become more severe 

which targets Respiratory Organ, Liver, Kidneys, Hearts and etc. 

The polarity of this virus is positive-sense ((+) ssRNA). Positive 

sense viral RNA is similar to mRNA and thus can be immediately 

translated by the host cell. Recombination in RNA viruses appears 

to be an adaptation for coping with genome damage. 

Recombination can occur infrequently between animal viruses of 

the same species but of divergent lineages. The resulting 

recombinant viruses may sometimes cause an outbreak of 

infection in humans. RNA viruses have very high mutation rates 

This is one reason why it is difficult to make effective vaccines to 

prevent diseases caused by RNA viruses. The resulting 

recombinant viruses causes an outbreak of infection in humans. 

[Sorush Niknamian et al. 2021] 

 

Materials and Methods 

 
The question of possible interbreeding between Neanderthals and 

anatomically modern humans (AMH) had been looked into since 

the early archaeogenetic studies of the 1990s. In 2006, no 

evidence for interbreeding had yet been found. [9] In 2009, 

analysis of about one-third of the full genome of the Altai 

individual was still reported as showing no sign of admixture. The 

variant of microcephalin common outside Africa, which was 

suggested to be of Neanderthal origin and responsible for rapid 

brain growth in humans, was not found in Neanderthals. Nor was 

a very old MAPT variant which is found primarily in Europeans. 

[10] Positive evidence for admixture was first published in May 

2010. [11] Neanderthal-inherited genetic material is found in all 

non-African populations and was initially reported to comprise 1 

to 4 percent of the genome. [12] This fraction was later refined to 

1.5 to 2.1 percent. [13]  

 

It is estimated that 20 percent of Neanderthal DNA currently 

survives in modern humans. [14] Modern human genes involved 

in making keratin, a protein constituent of skin, hair, and nails, 

have especially high levels of introgression. For example, 

approximately 66% of East Asians contain a POUF23L variant 

introgressed from Neanderthals, while 70% of Europeans possess 

an introgressed allele of BNC2.  

 

Neanderthal variants affect the risk of developing several 

diseases, including lupus, biliary cirrhosis, Crohn's disease, type 

2 diabetes, and severe COVID-19. [15-17] The allele of MC1R 

which was originally linked to red hair in Neanderthals is not 

found in Europeans, but is present in Taiwanese Aborigines at a 

frequency of 70% and moderately high frequencies in other East 

Asian populations; hence, there is no evidence that Neanderthals 

had red hair.[18] While interbreeding is viewed as the most 

parsimonious interpretation of these genetic findings, the 2010 

study still could not conclusively rule out an alternative scenario, 

in which the source population of non-African modern humans 

was already more closely related to Neanderthals than other 

Africans were, because of ancient genetic divisions within 

Africa.[19] [20] Research since 2010 has refined the picture of 

interbreeding between Neanderthals, Denisovans, and 

anatomically modern humans. Interbreeding appears to have 

occurred asymmetrically among the ancestors of modern-day 

humans, and that this is a possible rationale for differing 

frequencies of Neanderthal-specific DNA in the genomes of 

modern humans. Vernot and Akey (2015) concluded that the 

relatively greater quantity of Neanderthal-specific DNA in the 

genomes of individuals of East Asian descent than those of 

European descent cannot be explained by differences in 

selection.[21] They further suggest that "two additional 

demographic models, involving either a second pulse of 

Neanderthal gene flow into the ancestors of East Asians or a 

dilution of Neanderthal lineages in Europeans by admixture with 

an unknown ancestral population" are parsimonious with their 

data.[21] Similar conclusions were reached by Kim and 

Lohmueller (2015): "It has been hypothesized that the greater 

proportion of Neanderthal ancestry in East Asians than in 

Europeans is since purifying selection is less effective at 

removing weakly deleterious Neanderthal alleles from East Asian 

populations. Using simulations of a broad range of models of 

selection and demography, we have shown that this hypothesis 

cannot account for the higher proportion of Neanderthal ancestry 

in East Asians than in Europeans. Instead, more complex 

demographic scenarios, most likely involving multiple pulses of 

Neanderthal admixture, are required to explain the data."[22] 

 

Khrameeva et al. (2014), a German-Russian-Chinese 

collaboration, compiled a consensus Neanderthal genome based 

on the genome of the Altai individual and of three Vindjia 

individuals. This was compared to a consensus chimpanzee 

genome as the outgroup and to the genome of eleven modern 

populations (three African, three East Asian, three European). 

Beyond confirming the significantly higher similarity to the 

Neanderthal genome in non-Africans than in Africans, the study 

also found a difference in the distribution of Neanderthal-derived 

sites between Europeans and East Asians, suggesting recent 

evolutionary pressures. Asian populations showed clustering in 

functional groups related to immune and hematopoietic pathways, 

while Europeans showed clustering in functional groups related 

to the lipid catabolic process. [23] Evidence for AMH admixture 

to Neanderthals at roughly 100,000 years ago was presented by 

Kuhlwilm et al. (2016). [24]  
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Figure 1: How Neanderthals affected gene flow in humans 

 

There have been at least three episodes of interbreeding. The first 

would have occurred soon after some modern humans left Africa. 

The second would have occurred after the ancestral Melanesians 

had branched off—these people seem to have thereafter bred with 

Denisovans. The third would have involved Neanderthals and the 

ancestors of East Asians only. [25-27]  

 

A 2016 study presented evidence that Neanderthal males might 

not have had viable male offspring with AMH females. This could 

explain why no modern man to date has been found with a 

Neanderthal Y chromosome. [28] A 2018 study concluded that 

interbreeding between Neanderthals and modern humans led 

initially to the exposure of each species to unfamiliar viruses. 

Later on, the exchange of genes granted resistance to those 

viruses, too. [29]  

 

On July 3, 2020, scientists reported finding that a major genetic 

risk factor of the Covid-19 virus was inherited from archaic 

Neanderthals 60,000 years ago. [7][8] [30] It is estimated that 

16% of Europeans and 50% of South Asians have the particular 

sequence on chromosome III, with 63% of Bangladeshis having 

these gene sequences. Africans, Middle Easterners, and East 

Asians reported the presence of the chromosome in very 

negligible amounts. [31-33] 

If someone becomes infected with the coronavirus SARS-CoV-2, 

he/she might wish there was a fast way to check his/her 

Neanderthal ancestry. A small but significant number of people 

have an ancient gene variant from the extinct hominin that may 

double, or even quadruple, their risk of serious complications 

from COVID-19. The finding shines a light on an enzyme called 

dipeptidyl peptidase-4 (DPP4). Scientists already know the 

protein allows another coronavirus, which causes Middle Eastern 

respiratory syndrome (MERS), to bind to and enter human cells. 

The new analysis, of DPP4 gene variants among COVID-19 

patients, suggests the enzyme also provides SARS-CoV-2 with a 

second door into our cells, along with its usual infection route via 

the angiotensin-converting enzyme 2 (ACE2) receptor on cell 

surfaces. [34-37] 

 
Figure 2: Evolutionary relationship of modern human, 

Neanderthal, and chimpanzee. (James P. Noonan, 2010) 

 

 
 

Figure 3: DNA sequences were generated on the Illumina HiSeq 

platform and constitute an average 50-fold coverage of the 

genome. 99.9% of the 1.7GB of uniquely mappable DNA 

sequences in the human genome are covered at least ten times. 

[Pääbo and Hugo Zeberg et al. 2010] 

 

Contamination with modern human DNA, estimated from 

mitochondrial and nuclear DNA sequences, is around 1%. The 

figure shows a tree relating this genome to the genomes of 

Neanderthals from Croatia, from Germany and from the Caucasus 

as well as the Denisovan genome recovered from a finger bone 

excavated at Deniosva Cave. It shows that this individual is 

closely related to these other Neanderthals. Thus, both 

Neanderthals and Denisovans have inhabited this cave in southern 

Siberia. Other groups looking in genetic databases for factors that 

influence COVID-19 severity have not flagged the DPP4 gene. 

But the work is provocative because it suggests some diabetes 

drugs, which target the cell surface protein, could help treat the 
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disease. We want to put this finding out there quickly so people 

can systematically test if DPP4 could be a therapeutic target in 

patients with Coronavirus. [38-39] 

 

DPP4 may play a role in the infection of SARS-CoV-2. DPP4 

should be a good binding partner for the protein called spike on 

the surface of the SARS-CoV-2 virus, based on comparing amino 

acid sequences and crystal structures of the enzyme and spike’s 

established partner, ACE2. Another team, however, had earlier 

ruled out DPP4 as a SARS-CoV-2 receptor after finding the virus 

did not bind with it in cell line studies. [40]  

 

Pääbo and co-author Hugo Zeberg, also an evolutionary geneticist 

at Max Planck, have now highlighted DPP4 again. Most 

Europeans, Asians, and Native Americans harbor a handful of 

genes from Neanderthals, up 1.8% to 2.6% of their DNA.  

 

Studies of ancient DNA in Neanderthal fossils have shown the 

hominin's DPP4 gene subtly differs from the typical human one. 

Pääbo and Zeberg examined whether that Neanderthal gene 

variant or others from the extinct species appear more often in 

people with severe cases of COVID-19 than in uninfected people. 

For that, they turned to the latest data released in October from 

the COVID-19 Host Genetics Initiative, which has collected 

genome information and COVID-19 status on many people from 

other studies or data banks. [41-46] They only searched for 

Neanderthal versions of genes in people who had had severe 

COVID-19, which gave them a quick way to see whether these 

archaic genes influenced how living people responded to the 

coronavirus. The Neanderthal version of DPP4 popped up at a 

higher frequency in the genomes of 7885 people hospitalized with 

severe COVID-19 than in a control group. If a person had a single 

copy of the Neanderthal gene variant, they had double the risk of 

severe COVID-19 when infected, if both their copies of DPP4 

were Neanderthal, their risk quadrupled. [47] 

 

The researchers estimate that between 1% and 4% of Europeans 

and Asians have inherited a Neanderthal version of the DPP4 

gene. [48-50] 

 

A 2018 study by David Enard found that living humans have 

inherited a disproportionate number of Neanderthal variants of 

immune genes that target RNA viruses like coronaviruses, 

compared with genes that respond to DNA viruses. [51-52] 

Science’s COVID-19 reporting is supported by the Pulitzer 

Center and the Heising-Simons Foundation. It’s one of the 

pandemic’s puzzles: Most people infected by SARS-CoV-2 never 

feel sick, whereas others develop serious symptoms or even end 

up in an intensive care unit clinging to life. Age and preexisting 

conditions, such as obesity, account for much of the disparity. But 

geneticists have raced to see whether a person’s DNA also 

explains why some get hit hard by the coronavirus, and they have 

uncovered tantalizing leads. [53-55] 

 

A U.K. group studying more than 2200 COVID-19 patients has 

pinned down common gene variants that are linked to the most 

severe cases of the disease, and that points to existing drugs that 

could be repurposed to help. Each one provides a potential target 

for treatment. [56-69] 

 

Conclusion 
 

The hominin's DPP4 gene subtly differs from the typical human 

one. Pääbo and Zeberg examined whether that Neanderthal gene 

variant or others from the extinct species appear more often in 

people with severe cases of COVID-19 than in uninfected people. 

For that, they turned to the latest data released in October 2020 

from the COVID-19 Host Genetics Initiative, which has collected 

genome information and COVID-19 status on many people from 

other studies or data banks. They only searched for Neanderthal 

versions of genes in people who had had severe COVID-19, 

which gave them a quick way to see whether these archaic genes 

influenced how living people responded to the Coronavirus. If a 

person had a single copy of the Neanderthal gene variant, they had 

double the risk of severe COVID-19 when infected, if both their 

copies of DPP4 were Neanderthal, their risk quadrupled. The fact 

is Neanderthal Genes in modern humans, lowered the Immune 

System and faced them with many diseases such as HPV, 

Diabetes, Flu, COVID-19 and many infectious diseases. All 

humans contain this gene from 1 to 4 percent. East Asians, 

Europeans, Middle and south Americans conveys more, hence; 

native Africans contain less amounts of hominin's DPP4 gene. 

Therefore; East Asians, Europeans, Middle and south Americans 

are prone to severe COVID-19. 
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