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Abstract: 
Background: Accumulating evidence implicates infiltrating inflammatory cells in 

intracranial aneurysms. However, few studies have examined immunological 

differences between aneurysm rupture statuses. To address this gap, the present study 

aimed to infer the proportions of specific immune cell types in ruptured and unruptured 

intracranial aneurysms.  

Methods: An established machine-learning deconvolution algorithm was applied on 

RNA-sequencing data developed from vessel wall tissue of 21 ruptured and 21 

unruptured intracranial aneurysms. A validated gene signature matrix of human 

hematopoietic cell subsets was used to infer the relative fractions of immune cells 

present within the original aneurysm tissues.   

Results: Deconvolution of the bulk gene expression data showed significantly 

increased plasma cells, CD8+ T cells, and activated natural killer cells in unruptured 

aneurysms compared to ruptured aneurysms.  

Conclusion: Specific lymphoid elements may be involved in an inflammatory reaction 

prior to intracranial aneurysm rupture.   

Keywords: intracranial aneurysm; lymphocytes; neuroinflammation  

Introduction 

Intracranial aneurysms (IA) are common cerebrovascular abnormalities prevalent in 

about 3.2% of the general population [1]. Ruptured aneurysms present with lethality in 

up to 65% of cases and can significantly disable those who survive [2-3]. Current 

preventive treatments of unruptured IA carry notable risks of complications [4]. Novel 

strategies to inhibit the rupture of IA are therefore warranted. Despite several risk 

factors identified for IA, no safe noninvasive therapies have been established as of yet 

partly due to the lack of knowledge of mechanisms leading to the rupture of IA. 

However, recent evidence has implicated the role of inflammation in aneurysm 

pathogenesis.   

The common pathway for aneurysm formation begins with hemodynamic stress 

causing endothelial injury and dysfunction. The resulting inflammatory response in the 

vessel wall leads to internal elastic lamina disruption and extracellular matrix 

remodeling, presumably causing the formation of an aneurysm. From here, further 

vessel wall degeneration ultimately leads to IA rupture [5]. The transition from 

unruptured IA to the ruptured phenotype has been associated with matrix 

metalloproteinases, suggesting breakdown of vessel extracellular matrices lead to 

rupture [6]. Metalloproteinases are produced abundantly by leukocytes [7-8]. Indeed, 

histological analyses have reported infiltration of T cells, B cells, and macrophages in 

aneurysm walls [9-10]. Moreover, complement proteins and immunoglobulins have 

also been found increased in ruptured compared to unruptured IA, suggesting a humoral 

response and B lymphocyte contribution to rupture pathogenesis [11]. Taken together, 

these findings suggest differential immune involvement between aneurysm rupture 

statuses. However, the exact immune cell subtypes involved still remain obscure.  

Immunohistochemistry and flow cytometry are common techniques to analyze cell 

compositions of tissues but have notable limitations. Unambiguous classifications of 

cell types 
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compositions of tissues but have notable limitations. Unambiguous 

classifications of cell types by flow cytometry is mostly based on 

marker proteins which are limited by the number of fluorescence 

channels while immunohistochemistry can only evaluate a number 

of populations at a certain time. To circumvent these limitations, 

the present study used a transcriptomic deconvolution algorithm to 

enumerate immune cell abundances from a previous aneurysm 

gene expression dataset. The resolving power is the benefit of the 

algorithm, which has been validated with significant clinical 

implications [12-14].  

 

The work presented here estimated the relative proportions of 

major immune cell subtypes within unruptured and ruptured IA by 

deconvoluting bulk gene expression data from these aneurysm 

walls. The findings show increased abundance of certain lymphoid 

immune cells in unruptured aneurysms and identified novel 

immune populations not previously characterized in this vascular 

phenotype.  

 

Materials and Methods: 
 

A previously published dataset consisting of IA gene expression 

profiles was used for this study [15]. The dataset consists of bulk 

tissue RNA-sequencing data of tissue from 21 ruptured and 21 

unruptured IA. The data was generated using the Illumina HiSeq 

2500 platform and was downloaded from the Gene Expression 

Omnibus database (http://www.ncbi.nlm.nih.gov/geo) under 

accession GSE122897. The raw reads were converted to TPM 

(transcripts per million) space prior to input into the algorithm. 

 

CIBERSORTx, an established machine-learning deconvolution 

algorithm, was implemented to provide an estimation of the 

relative abundances of immune cells from the original CCM 

lesions [16]. The algorithm accurately quantifies the relative 

fractions of distinct cell types within a complex gene expression 

mixture given cell type-specific gene signatures. For this, a 

validated microarray-derived signature matrix for distinguishing 

22 human hematopoietic cell subsets was used to deconvolute the 

lesion tissue gene expression profiles [17].  The CIBERSORTx 

algorithm was run with bulk-mode batch correction and 500 

permutations in relative mode. Quantile normalization was not 

implemented as dataset was generated from RNA-sequencing. 

Deconvoluted samples were deemed significant if CIBERSORTx 

P-value < 0.05, which represents the significance of the 

deconvolution results across all cell subsets for goodness-of-fit 

[16].  

 

The data output was downloaded and analyzed with R 

programming language. Normality was not assumed and no values 

were excluded, thus the non-parametric Mann Whitney U test was 

used for comparisons. P-value < 0.05 was deemed significant.  

 

Results: 
 

After RNA deconvolution for immune cell subset identification, 

all 42 samples were significant at the criteria for CIBERSORTx P-

value < 0.05 and were deemed suitable for further analysis. 

Comparing unruptured to ruptured IA showed increased plasma 

cells, CD8+ T cells, and activated natural killer cells in unruptured 

IA (shown in Fig. 1-3).  

 

 

 
Fig. 1. Violin plot of relative abundances of plasma cells 

estimated from ruptured and unruptured intracranial aneurysms. 

Overlaid boxplot represents upper and lower quartiles, with black 

notch depicting the median. Whiskers depict 1.5 times IQR.  **P 

< 0.01.  

 
Fig. 2. Violin plot of relative abundances of CD8+ T cells 

estimated from ruptured and unruptured intracranial aneurysms. 

Overlaid boxplot represents upper and lower quartiles, with black 

notch depicting the median. Whiskers depict 1.5 times IQR.  **P 

< 0.01.  
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Fig. 3. Violin plot of relative abundances of activated natural 

killer cells estimated from ruptured and unruptured intracranial 

aneurysms. Overlaid boxplot represents upper and lower quartiles, 

with black notch depicting the median. Whiskers depict 1.5 times 

IQR.  *P < 0.05.  

 

Discussion/Conclusion: 
 

The present study found certain immune cell subtypes are present 

at increased concentrations in unruptured IA compared to ruptured 

IA walls. Importantly, these findings elucidate specific immune 

subsets involved, such as CD8+ T cells. T cells have already been 

associated with IA as the second most abundant infiltrates [18-19]. 

More importantly, a recent study found decreased peripheral CD8+ 

T cells in the acute phase of subarachnoid hemorrhage compared 

to controls [20]. However, the mechanism behind this deregulation 

has not been examined. Plasma cells are terminally differentiated 

B-lymphocytes that develop a characteristic morphology and 

robustly produce immunoglobulins. The increased presence of 

these cells in unruptured IA walls suggests that the inflammatory 

reaction is initiated by a humoral immune response. Previous 

studies have described sporadic B-lymphocytes in unruptured 

aneurysm tissue [18]. Prior immunohistochemistry examinations 

have also recorded the presence of IgG and IgM immunoglobulins 

in the majority of the investigated aneurysm walls [18, 21]. In 

addition, these results point toward a role for natural killer cells in 

the pathogenesis of IA. With regards to aneurysms, natural killer 

cells have been found in high percentages in abdominal aortic 

aneurysms with little data describing their involvement or presence 

in unruptured IA [22]. It is possible these cells exert a cytotoxic 

effect and contribute to endothelial injury within IA walls prior to 

rupture. However, since there was a delay of >48 hours between 

subarachnoid hemorrhage and clipping in half the patients 

analyzed, the overexpression of immune response gene profiles 

may be an artifact of an inflammatory reaction in response to the 

rupture instead of a contribution to the rupture.  

 

The limitations of this study include the in-silico approach to 

deconvolute gene expression data from bulk tissue sample. The 

data processing does not account for the spatial relationship of 

tissue and cytoarchitecture. Nonetheless, based on the hypothesis-

generating data presented here, further studies are warranted to 

elucidate the exact mechanisms and interactions of these immune 

subsets in IA rupture.  
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