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Figure 1a 

 

Many believe artificial intelligence (AI) is a solution for the 

practical and financial challenges that inhibit population-based 

screening and diagnosis of eye diseases.7 AI utilizes computer-

based algorithms and novel software to replicate human for the 
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Abstract: 
Age-related macular degeneration (AMD) is one of the most common causes of severe 

vision loss worldwide affecting people over the age of 55 years. AMD associated 

retinal biomarkers have become a target in research as they aid in understanding the 

mechanism of disease, determining the risk of disease progression, and serving as 

outcome metrics for clinical research. Artificial intelligence has the potential to 

provide excellent tools for the diagnosis of advance AMD. Methods based on machine 

learning (ML) and particularly deep learning (DL) are able to identify, localize, and 

quantify diagnostic features in AMD. The goal of this mini-review is to give an 

overview of the most important retinal biomarkers of AMD identified using multiple 

imaging modalities and summarize studies related to modern artificial intelligence 

algorithms for the diagnosis of the disease. 

Key words:  age-related macular degeneration; biomarkers; artificial intelligence; 

optical coherence tomography; color fundus photography 

 

1. Introduction 

 

Age-related macular degeneration (AMD) is an acquired macular disease resulting in 

irreversible loss of central vision. It is the 3rd leading cause of vision loss in people 

over the age of 55 years (Shen et al., 2016). The world report on vision estimates that 

there are 196 million AMD patients worldwide (Vyas et al., 2023). A recent meta-

analysis predicted that until 2050, there will be 39.05 million and 6.41 million new 

cases of early and late AMD, respectively (Wang et al., 2022). There are two different 

phenotypes of late AMD: dry (atrophic) and neovascular (wet, exudative) AMD. Dry 

AMD is characterized by drusen formation and photoreceptor degeneration, while in 

neovascular AMD (nvAMD) there is an abnormal growth of sub-retinal blood vessels 

(Stahl, 2020). Although both forms result in visual impairment, the neovascular form 

is responsible for 90% of the vision loss. The multifactorial etiology of AMD involves 

complex histopathological changes in the retina and drusen formation (Soundara Pandi 

et al., 2021). These morphological and structural changes are used to determine the 

stage of the disease, identified with the help of retinal imaging techniques (Metrangolo 

et al., 2021). Color fundus photography (CFP), fundus fluorescence angiography 

(FFA), indocyanine green angiography (ICGA), fundus autofluorescence (FAF), 

optical coherence tomography (OCT), and optical coherence tomography angiography 

(OCTA) are all imaging techniques that can be used to determine the clinical stage of 

AMD (Victor, 2019). These imaging modalities have been the main applications of 

artificial intelligence (AI) in screening, diagnosis, and treatment of AMD (Pucchio et 

al., 2022).  

 

Artificial intelligence is a branch of computer science that seeks to develop intelligent 

machines to mimic brain function. In 1959, Arthur Samuel developed a sub-set of AI 

known as machine learning (ML). ML is focused on providing computers the 

capability to learn without being explicitly programmed (Schmidt-Erfurth et al., 

2018b; Dong et al., 2021). Deep learning (DL) is part of a larger group of machine 

learning methods that are based on the framework of an artificial neural network, 

composed of multiple inputs and a single output. As opposed to traditional ML 

methods, which function through task-specific algorithms or engineered features, DL 

provides data representation (Romond et al., 2021). 

 

 

Atopic dermatitis: 

 

Atopic dermatitis (AD) is a genetic skin disorder and also affects the eyelids. The eye 

lid skin becomes red and scaly, and oozing and itching are common. Sometimes the 
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Artificial intelligence has exhibited a promising future in 

biomedical science, particularly in the diagnosis of ocular 

diseases. A number of studies have attempted to assess the 

performance of AI in the diagnosis of AMD. Considering that 

early diagnosis is one of the biggest issues in the care of AMD 

patients, the identification of imaging biomarkers could add to the 

patient screening process and enable earlier detection, improving 

vision outcomes. 

 

This minireview aims to summarize the different imaging 

biomarkers contributing to AMD diagnosis and provide an 

overview of AI applications, including machine and deep learning 

models, for the same. 

 

2. Imaging Biomarkers 
 

Biomarker refers to morphological and structural changes that 

enable the diagnosis and progression of a disease. Over the last 

decade, a number of imaging biomarkers appeared to have a 

diagnostic value in association with AMD (Metrangolo et al., 

2021). Key retinal imaging biomarkers associated with AMD 

include drusen, hyper-reflective retinal spots/dots/foci (HRF), 

subretinal hyper-reflective material (SHRM), outer retinal 

tubulation (ORT), retinal thickness, RPE atrophy, retinal fluids, 

and pigment epithelial detachment (PED) (figure 1). 

 

 
Figure legend: Predictive retinal Biomarkers (A) the presence of 

dome-shaped elevations of RPE represents Drusens (B)  red stars 

are representing Hyper-reflective retinal foci (C) retinal layers and 

photoreceptor layer appears normal (D) Compared to figure 1(c) 

retinal thickness is increased and photoreceptor layer is disrupted 

(E) hyporeflective cystoid gaps suggests presence of Intraretinal 

fluid (F) Exudation between RPE and photoreceptors refers to 

Subretinal fluid (G) Serous PED is recognized as a smooth, 

rounded elevation of the RPE over an optically empty region that 

is inferiorly confined by an obvious Bruch's membrane (H) 

Fibrovascular PED appears as irregular RPE elevation in contrast 

to the smooth elevation of a serous PED (I) Drusenoid PED is 

visible as smooth contour of the detached hyperreflective RPE 

band.  

 

2.1. Drusen 

 

Drusen are small yellowish deposits between the basal lamina of 

human retinal pigment epithelium (RPE) and the inner 

collagenous layer of Bruch’s membrane (BM). Presence of drusen 

is hallmark of all AMD phenotypes. Epidemiologically, drusen 

with a diameter of 63 µm and an age of ≥55 years is typically set 

as the lower limits of relevance for the diagnosis of AMD. Drusen 

can be categorized as hard (small), soft (soft), cuticular, refractile 

and pseudo-reticular (Garrity et al., 2018; Flores et al., 2021b).  

 

Hard drusen are yellow deposits with diameter <63 µm. These 

deposits are hypothesized to be precursor of AMD. In the 

presence of >8 hard drusen in one eye, the chances of the 

development of soft drusen increases conspicuously (Pedersen et 

al., 2018). Soft drusen are poorly defined deposits, extending 

beyond 63 µm, and have non-discrete borders (Flores et al., 

2021b). Compared to hard drusen, soft drusen are more common 

in AMD patients. Also, patients having baseline soft drusen are 

more likely to be affected by advanced form of AMD (Baumal et 

al., 2022). 

 

Drusen were primarily described using color fundus photograph 

(CFP) prior to the development of multimodal imaging. Drusen 

characteristics investigated in CFP include its size, area, and 

pigmentary changes. While CFP may enable qualitative 

assessment of drusen sufficient for routine clinical practice, 

quantitative analysis is generally limited. On ICGA, drusen shows 

hyperfluorescent spots. The wider range of drusen morphologies 

can be best identified using OCT imaging, which also offers 

reproducible quantitative analysis (Garrity et al., 2018; Sakurada 

et al., 2022). Using SD-OCT, small- and medium-sized drusen 

can be observed more clearly as distinct areas of elevated RPE 

with variable reflectivity, which suggests the variable 

composition of the underlying material (Kanagasingam et al., 

2014).  

 

Cuticular drusen, also known as basal laminar drusen are small, 

yellowish deposits under RPE (Yoon et al., 2022). Cuticular 

drusen have been observed in the eyes of patient with advanced 

form of AMD. Although cuticular drusen are also reported in 

vitelliform macular detachment, the visual prognosis is better for 

AMD patients (Sato et al., 2015). In images of CFP of cuticular 

drusen, it is seen as visible RPE changes, while hypefluorescence 

like “stars in the sky” like appearance on FA. On late phase ICGA, 

the cuticular drusen appears as a number of hyperfluorescencnt 

spots. OCT images shows saw-tooth pattern (Sakurada et al., 

2022). 

 

Refractile drusen (RD), also known as “ossified drusen” or 
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“crystalline drusen”, are shining yellow-hyper-refractile dots 

which are clearly visible in the absence of the RPE layer. RD is 

believed to be composed of calcium and is thus also referred to as 

“calcified drusen” (Mishra et al., 2019). The presence of calcified 

drusen has been observed in both early and advanced forms of 

AMD. These drusen have a glistening (also described as chalky 

white, shiny, or calcific) appearance as determined by funduscopy 

or CFP (Oishi et al., 2017). Their OCT appearance is referred to 

as "heterogeneous internal reflectivity within drusen" (HIRD). 

HIRD are distinguished by a hyporeflective core and 

hyperreflective cap (Sakurada et al., 2022). 

 

Reticular pseudodrusen (RPD), also termed as subretinal 

drusenoid deposits (SDD) are morphological retinal changes that 

differ from conventional drusen by being situated above RPE’s 

level (Wightman & Guymer, 2019). RPD increases the risk of 

AMD by 3.4 times in the elderly population. These are 

significantly correlated with phenotypic features of advance 

AMD (Rabiolo et al., 2017). However, in 2022, Wu et al. found 

that the risk of developing late AMD was not linked to the 

existence of RPD or their baseline extent (Wu et al., 2022). RPD 

are classified into three categories based on their appearance in 

multimodal imaging: dot, ribbon, and midperipheral (Spaide & 

Curcio, 2010). Reticular pseudodrusen were discovered on blue 

light photography. On CFP, ribbon pseudodrusen could be 

distinguished more easily than with near infrared reflectance 

(NIR). While, dot pseudodrusen are easy to identify on NIR. SD-

OCT reveals RPD as drusenoid deposits over RPE (Ueda-

Arakawa et al., 2013). 

 

2.1.1. Drusen Volume: The analysis of drusen volume is crucial 

for understanding the disease's pathogenesis. Multiple studies 

using SD-OCT on patients with early- or intermediate-stage AMD 

identified that drusen area, height, and length predicted 

progression to late-stage. Individuals with higher baseline drusen 

volume are at higher risk of progression to advanced forms. An 

increase in drusen height is associated with progression to GA, 

while drusen length is related to progression to nvAMD (Flores et 

al., 2021a). Drusen with baseline volume above 0.03 mm2 are a 

significant indicator of advance AMD development (Hanson et 

al., 2022). 

 

2.2 Hyper-reflective retinal spots/dots/foci 

 

The hyperreflective foci (HRF) are retinal lesions (20–40 μm in 

diameter) that appear as roundish, hyperreflective spots in the 

retinal layer. HRF expression has been linked to a number of 

retinal diseases, including diabetic macular edema, AMD, retinal 

vein occlusion, retinal dystrophies, and uveitis (Fragiotta et al., 

2021). In 2008, Khanifer et al. reported HRF for the first time with 

SD-OCT in AMD. Interestingly, HRF were observed overlying 

regions of RPE elevation and frequently in conjunction with 

calcified drusen (Khanifar et al., 2008). Additionally, an increase 

in HRF is associated with RPE atrophy and considered a precursor 

to GA (Fragiotta et al., 2021). HRF may manifest as single or in 

groups. They are relatively stable and are thought to be strong 

predictor of AMD progression (Flores et al., 2021a). 

 

2.3 Subretinal hyper-reflective material: 

 

Subretinal hyper-reflective material (SHRM) is a morphological 

characteristic seen on OCT as hyper-reflective material that is 

located external to the retina, and internal to the RPE (Willoughby 

et al., 2015). SHRM is most likely composed of fluid, fibrin, 

blood, scar, or fibrovascular tissue (Alex et al., 2021). SHRM in 

AMD has a prognostic significance, as persistence of these 

materials are associated with sub-retinal fibrosis and a poor visual 

outcome even with treatment (Sahoo et al., 2020). 

 

2.4 Outer retinal tubulation 

 

Histologically, outer retinal tubulation (ORT) was defined as 

interconnecting tubes that contain degenerated photoreceptors 

and envelop Müller cells in AMD (Schaal et al., 2015). ORTs are 

more frequently present in the outer nuclear layer. Over time, the 

occurrence of ORT in nvAMD increases and is linked to reduced 

visual acuity. Using OCT-B scans, OTRs are observed as 

hyporeflective structures surrounded by a hyperreflective band 

(Metrangolo et al., 2021). 

 

2.5 Alterations of outer retinal layers  

 

Neovascular invasion and fluid exudation results in significant 

damage to the photoreceptor layers resulting in severe functional 

loss. OCT can identify changes like signal alterations in the outer 

retina's hyperreflective bands (Schmidt-Erfurth & Waldstein, 

2016). Degeneration and loss of photoreceptors are known 

characteristic feature of advance AMD and thought to be key 

factors leading to vision loss (Metrangolo et al., 2021). 

 

2.6  Retinal thickness 

 

Retinal thickness has become a common and useful tool for 

diagnosing and monitoring AMD. Previous research has 

demonstrated an increase in retinal thickness in AMD patients 

compared to healthy controls (Zouache et al., 2020). Retinal 

thickness measurement is the simplest method for quantifying 

retinal changes on OCT. A persistent increase in retinal thickness 

is indicative of localized leakage. The major drawback of retinal 

thickness as a biomarker is that it encompasses a variety of retinal 

compartments. The simple measurement of central retinal 

thickness does not distinguish the contribution of these 

components to pathological changes and visual outcomes (Wong 

et al., 2021).  

 

2.7 Retinal pigment epithelial atrophy 

 

Retinal pigment epithelial (RPE) atrophy is marked by a 

degeneration of retinal layers, RPE and choriocapillaris (Hanson 

et al., 2022). 

 

2.8  Retinal fluids: 

 

As mentioned above, nvAMD is characterized by abnormal 

growth of choroidal vessels, breaking through BM and 

proliferating through sub-RPE space. These vessels can penetrate 

into the subretinal and intraretinal layers beyond RPE. Depending 

on the extent of the CNV and the retinal tissue's capacity to 

resolve it, exudation caused by the immaturity of these vessels 

frequently leads to fluid accumulation in different layers 

(Metrangolo et al., 2021). This fluid accumulation can be best 

visualized by using SD-OCT (Kanagasingam et al., 2014). 
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2.8.1 Intraretinal fluid:  

 

Intraretinal Fluid (IRF) is a cystoid accumulation of fluid in the 

inner layers of retina that is frequently accompanied by increased 

retinal thickness (Metrangolo et al., 2021). Presence of IRF is 

frequently associated with poor visual acuity, signifying that the 

neovascular network has begun to invade the retina after bursting 

through its constricted sub-RPE space. Depending on the imaging 

quality, IRF on OCT can either be present as hyporeflective 

cystoid gaps or as diffused retinal thickening (i.e., a retinal 

thickness of ≥100 µm suggests presence of fluid) (Wong et al., 

2021). 

 

2.8.2 Subretinal fluid:  

 

Subretinal fluid (SRF) is defined as an exudation that occurs 

between the outer border of photoreceptor cells and the inner 

border of the RPE (Metrangolo et al., 2021). SRF is the only 

biomarker which is consistently associated with a positive 

response to anti-VEGF treatment (Wong et al., 2021). In a clinical 

study the presence of SRF was found to be associated with high 

visual outcomes and lower atrophy, even when intravitreal 

therapy is administered less frequently (Sadda et al., 2018). 

 

 

2.9 Pigment epithelial detachment 

 

Retinal pigment epithelial detachment (PED) refers to a 

pathological condition in which the RPE separates from the inner 

layer of the BM due to the presence of blood, serous exudate, 

drusen, or a neovascular membrane. The presence of PED is a 

typical symptom of both wet and dry forms of AMD (Karampelas 

et al., 2020). 

The following mechanisms contribute to the development of 

PEDs in context of AMD: (a) Age-related material deposition and 

thickening of BM cause a steady drop in hydraulic conductivity, 

which causes impermeability to fluid passage (Bird, 1991); (b) 

RPE cells gradually accumulate residual bodies, which causes 

drusen formation and RPE gradually gets separated from BM 

(Bressler et al., 1994); (c) occurrence of choroidal 

neovascularization, which results in development of leaky blood 

vessels in sub-RPE space through BM (Green et al., 1985). The 

main types of PEDs are as follows: 

 

2.9.1 Serous retinal pigment epithelium detachment 

 

Serous PED develops as a result of fluid accumulation between 

RPE and BM. It manifests as well-defined elevations of the RPE. 

The fluid accumulation occurs due to an increase in 

choriocapillaris leakage and reduction in RPE pump function 

(Altintas* & Ilhan, 2018). Approximately 10% of patients 

suffering from the wet AMD have serous PED. Clinically, it was 

first characterised by Haab (V. Pasyechnikova et al., 2012). Upon 

clinical examination, it can be observed as a smooth, yellow-

orange colored, circular/oval area of regular detachment of RPE 

and neurosensory retina (Capuano et al., 2020).  On FA, it is 

characterised by presence of hyperfluorescent lesions with well-

defined borders. ICG videoangiography can be used to enhance 

the visualization of a CNV beneath a serous PED that is not visible 

by FA. Using ICG, serous PEDs typically show up as a region that 

is less luminous than the choroidal background (Pepple & 

Mruthyunjaya, 2011).  

By using OCT, the serous PED is recognised as a well 

demarcated, dome-shaped elevation of RPE (Sacconi et al., 2018; 

Karampelas et al., 2020). By using FAF, the detachment area 

appears hyperautofluorescent, while borders appear as 

hypoautofluorescent pigment deposits (Pepple & Mruthyunjaya, 

2011). 

 

2.9.2 Drusenoid retinal pigment epithelium detachment:  

 

Drusenoid PED is associated with confluent soft drusen and poses 

a high risk for dry AMD. With AMD being the most frequent 

scenario, the development of drusenoid PEDs can also be seen in 

other retinal conditions that exhibit AMD-like symptoms, such as 

malattia leventinese, cuticular drusen, and maculopathy linked to 

membranoproliferative glomerulonephritis type II (Mrejen et al., 

2013). Drusenoid PED develops slowly and results in minor 

complaints of vision impairment (Roquet et al., 2004). 

Clinically, they are observed as elevations of RPE with clear 

borders, yellow or yellow-white in color (Mrejen et al., 2013). On 

visualisation through FA, early phase of drusenoid PEDs 

generally appears as faint hyper-fluorescent followed by a transit 

stage that includes steady increase in fluorescence and no late 

leakage. On OCT, drusenoid PEDs are observed as a smooth 

contour of the detached band of hyperreflective RPE with an 

undulating appearance in some cases (Amaro et al., 2015). 

Through ICG angiography, area of drusenoid PED will block the 

underneath choroidal vasculature (Pepple & Mruthyunjaya, 

2011). 

 

2.9.3 Fibrovascular retinal pigment epithelium 

detachment 

 

Fibrovascular PEDs are related to presence of choroidal 

noevascularization (Yonekawa & Kim, 2014). Fibrovascular 

PEDs are distinguishable from serous PEDs on the basis of 

funduscopic examination due to their irregular surface contour. 

Fibrovascular PEDs may be associated with hyperpigmented 

RPE, sub-retinal hemorrhage, sub-retina lipid exudation, and 

intra/sub-retinal fluid accumulation. The elevation is often low 

and borders are poorly defined. Upon clinical examination, 

fibrovascular PED appears as a smooth, well-circumscribed, 

yellow-orange elevation of the RPE without leakage. On FA, 

these exhibit uneven hyper-fluorescence during the early phase 

and staining during the late phase (Capuano et al., 2020). While 

on ICGA, fibrovascular PEDs exhibit either a focused, well-

defined hyperfluorescent area that is smaller than 1 disc diameter, 

known as a hot spot, or a broader, more variable hyperfluorescent 

area known as a plaque (Karampelas et al., 2020). On FAF, 

FPEDs display a range of patterns, such as zones of hyper-and 

hypo-autofluorescence corresponding to RPE proliferation, 

photoreceptor loss, organised blood and atrophy, or masking by 

fresh blood (Camacho et al., 2015). They are visible on OCT as 

an irregularly elevated RPE with an interior which is not optically 

empty (Coscas et al., 2007). 

 

3. Artificial Intelligence: role in identifying biomarkers 

 

Artificial intelligence has the potential to identify the diagnostic 

features for individual patient outcomes. The majority of 

advances in using AI for AMD have been focused on the 
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application of models that are capable of facilitating image analysis, particularly automated segmentation, extraction, and 

quantification of imaging-based features. The key AI-based models for image analysis are discussed in this section (Table 1). 

 

Table 1: Different artificial intelligence techniques in analysing the retinal biomarkers in AMD. 

 
Study Study 

Region 

Imaging 

technique 

Clinical feature Model Metrics 

Fully Automated Detection and 

Quantification of Macular Fluid in OCT 

Using Deep Learning 

Austria OCT Detection and 

quantification of IRF 

and SRF 

DL AUC for IRF 0.94 

AUC for SRF 0.92 

DeepSeeNet: A deep learning model for 

automated classification of patient-based 

age-related macular degeneration severity 
from color fundus photographs 

Maryland CFP Large drusen, 

pigmentary 

abnormalities, and 
progression to late 

AMD 

DL 

(DeepSeeNet) 

AUC in the detection of large drusen 

(0.94), pigmentary abnormalities 

(0.93), and late AMD (0.97). 

Quantitative Analysis of OCT for 
Neovascular Age-Related Macular 

Degeneration Using Deep Learning 

United 
Kingdom 

OCT Drusen, IRF, SRF, 
SHRM, HRF, 

fibrovascular PED, and 

serous PED 

DL - 

Machine Learning of the Progression of 

Intermediate Age-Related Macular 

Degeneration Based on OCT Imaging 

Austria OCT Drusen regression, 

HRF 

ML Prediction within the first 2 years 

achieved an AUC of 0.75. 

Identifying Medical Diagnoses and 
Treatable Diseases by Image-Based Deep 

Learning 

China OCT Drusen, 
neovascularization 

DL (transfer 
learning 

algorithm) 

AUC: CNV vs normal-1; drusen vs 
normal- 0.99 

Artificial intelligence for morphology-

based function prediction in neovascular 

age-related macular degeneration 

Germany SD-OCT, 

FAF 

retinal microstructure 

in nvAMD 

ML Mean absolute error (MAE)- 3.94 dB 

Development of a Deep-Learning-Based 
Artificial Intelligence Tool for 

Differential Diagnosis between Dry and 

Neovascular Age-Related Macular 
Degeneration 

Republic 
of Korea 

OCT, FA 
and ICGA 

Drusen, sub-retinal 
fluid 

DL accuracy - >0.9 

Artificial Intelligence to Identify Retinal 

Fundus Images, Quality Validation, 
Laterality Evaluation, Macular 

Degeneration, and Suspected Glaucoma 

Spain CFP and 

OCT 

Drusen, pigmentary 

abnormalities 

DL Retinal fundus image had AUC of 

0.947, (sensitivity 96.9%, specificity 
81.8%). AMD had AUC of 0.936 

(sensitivity 90.2% specificity 82.5%), 

A Deep Learning Approach for 

Automated Detection of Geographic 
Atrophy from Color Fundus Photographs 

Maryland CFP Geographic atrophy DL For geographic atrophy detection, 

AUC- 0.933-0.976 

Automatic drusen quantification and risk 

assessment of age-related macular 
degeneration on color fundus images 

The 

Netherlan
ds 

CFP Drusen ML AUROC- 0.948 

Predicting wet age-related macular 

degeneration (AMD) using DARC 

(detecting apoptosing retinal cells) AI 
(artificial intelligence) technology 

Italy OCT Subretinal fluid DL (Detection 

of Apoptosing 

Retinal Cells 
[DARC]) 

sensitivities and specificities >70% 

Role of Deep Learning-Quantified 

Hyperreflective Foci for the Prediction of 
Geographic Atrophy Progression 

Austria SD-OCT HRF DL - 

An enhanced OCT image captioning 

system to assist ophthalmologists in 
detecting and classifying eye diseases 

India OCT neo-vascularization, 

drusen 

Various CNNs Accuracy of 0.969 

Predicting conversion to wet age-related 

macular degeneration using deep learning 

United 

Kingdom

s 

OCT Neo-vascularisation Artificial 

intelligence 

system 

Sensitivity of 80% at 55% specificity 

and sensitivity of 34% at 90% 

specificity  

Deep learning is effective for the 

classification of OCT images of normal 

versus Age-related Macular Degeneration 

Washingt

on 

OCT Drusen, retinal 

pigmented epithelium 

changes, IRF, SRF 

DL Dice coefficient for segmentation of 

IRF, SRF, SHRM and PRD are 0.78, 

0.82, 0.75 and 0.80 

Retinal Specialist versus Artificial 
Intelligence Detection of Retinal Fluid 

from OCT: Age-Related Eye Disease 

Study 2: 10-Year Follow-On Study 

Maryland SD-OCT Drusen, IRF, SRF ML (Notal 
OCT 

Analyzer) 

For retinal fluid accuracy was 0.805 
and a sensitivity of 0.468 at 0.970 

specificity 

Artificial Intelligence Machine Learning 

of Optical Coherence Tomography 

Angiography for the Diagnosis of Age-
related Macular degeneration 

Taiwan OCT-A Neo-vascularization ML 

(ResNet34) 

Accuracy 87.2% 

Automatic drusen quantification and risk 

assessment of age-related macular 

degeneration on colour fundus images 

The 

Netherlan

ds 

CFP Drusen ML 

(supervised) 

AUROC values of 0.948 and 0.954 
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Automatic identification of reticular 

pseudodrusen using multimodal retinal 
image analysis 

The 

Netherlan
ds 

CFP, FA Reticular 

pseudodrusen 

ML AUROC value of 0.941 

Quantification of key retinal features in 

early and late age-related macular 

degeneration using deep learning 

The 

Netherlan

ds 

OCT-B 

scans 

SHRM, retinal fluid DL For 11 out of 13 features mean Dice 

score was 0.63±0.15 and ICC was 

0.62±0.21 

Machine learning to analyze the 

prognostic value of current imaging 

biomarkers in neovascular age-related 
macular degeneration 

Austria SD-OCT IRF, SRF, PED Random forest 

regression 

algorithm 

At baseline, OCT features and BCVA 

were correlated with R2 = 0.21 

Application of automated quantification 

of fluid volumes to anti–VEGF therapy of 

neovascular age-related macular 
degeneration 

Austria SD-OCT IRF, SRF, PED DL (CNN) - 

Automated quantitative assessment of 

retinal fluid volumes as important 
biomarkers in neovascular age-related 

macular degeneration 

Populatio

n from 
different 

regions 

OCT IRF, SRF, PED AI  Large ranges that differed by 

population were observed at the 
treatment-naïve stage: 

0-3435nl (IRF), 0-5018nl (SRF), and 

0-10022nl (PED) 

Automated segmentation of lesions, 

including subretinal hyperreflective 

material in neovascular age-related 
macular degeneration 

South 

Korea 

SD-OCT IRF, SRF, PED, 

SHRM 

Automated 

segmentation 

algorithm with 
CNN 

Dice coefficients for segmentation of 

IRF, SRF, SHRM, and PED were 

0.78, 0.82, 0.75, and 0.80, 
respectively; 

Predicting risk of late age-related macular 

degeneration using deep learning 

Participa

nts from 

Age-
Related 

Eye 
Disease 

Studies 

AREDS 
and 

AREDS2 

OCT, CFP Progression to late-

stage AMD  

DL and 

survival 

analysis 

The C-statistic score was 86.4 

Combining macula clinical signs and 

patient characteristics for age-related 
macular degeneration diagnosis: A 

machine learning approach 

Italy OCT Drusen, RPE 

pigmentation, 
subretinal fluid, 

macular thickness 

ML Logistic Regression, 

AdaBoost, and random 
forests with a mean AUC of 0.92, 

followed by decision trees and support 

vector machines with a mean AUC of 
0.90. 

Risk Prediction Model for Progression of 

Age-Related Macular Degeneration 

South 

Korea 

- Drusen location, size, 

number 

Risk 

prediction 
model 

C-statistic score- 0.84 

AI: Artificial intelligence; AMD: Age-related Macular Degeneration; AUC: rea under the ROC curve; DME: diabetic macular edema; 

RVO: Retinal Vein Occlusion; OCT: Optical Coherence Tomography; DL: Deep Learning; IRF: Intraretinal Fluid; SRF: Subretinal 

Fluid; CFP: Color fundus photograph; HRF: Hyperreflective Foci; iAMD: Intermediate AMD; ML: Machine Learning; SD-OCT: 

Spectral Domain Optical Coherence Tomography; nvAMD: Neovascular AMD; FA: Fluorescein Angiography; ICGA: Indocyanine 

Green Angiography; OCTA: OCT-Angiography; CNN: Convolutional Neural Network 

 

3.1. Machine learning-based identification: 

 

Grinsven et al. evaluated a ML system for   the   automatic   

detection   and quantification of RPD by analysing images 

obtained from CFP, FAF, and near-infrared image (van Grinsven 

et al., 2015). 

 

Schmidt-Erfuth et al.  examined IRF, SRF, and PED in OCT 

volume scans to evaluate the predictive potential of ML in terms 

of best-corrected visual acuity (BCVA). At baseline, there was a 

slight correlation between BCVA and OCT (Schmidt-Erfurth et 

al., 2018a). 

 

Bogunović et al. developed a ML-based approach that uses a large 

number of biomarkers to calculate the risk of AMD progression. 

The model is based on imaging biomarkers that were evaluated  

 

just three months apart at the baseline and first follow-up visit.  

With an AUC performance of 0.75, the evaluation revealed that 

the developed model is useful for forecasting drusen events within  

the next 2 years (Bogunović et al., 2017). 

 

Marginean et al. used ML technologies to track the development 

of AMD with the goal of assisting the ophthalmologist in 

determining when early treatment is required. Surprisingly, 

shallow ML algorithms outperformed more sophisticated 

techniques like deep neural networks in this situation (Marginean 

et al., 2022). 

 

2.10 Deep learning-based identification: 

 

In recent years, deep learning (DL) has gained enormous global 

interest. DL has been widely used in occurred in image 

http://aditum.org/


                                                                                                    
             

 

       Aditum Publishing –www.aditum.org 
                                                                                                                                                                                                                                                                                                            Page 7 of 11 

 
 

J Ophthalmology and Vision Care 

recognition, speech recognition, and natural language processing, 

but its impact on healthcare is just beginning. In context to 

diagnosis of ocular disorders, DL has been applied to CFP, OCT, 

and visual fields. In conjunction with telemedicine, DL in ocular 

imaging can be used in screening, diagnosing, and monitoring 

major ocular diseases (Ting et al., 2019). 

 

Roy et al. proposed ReLayNet, a deep learning network 

architecture influenced by U-Net with modified layer-to-layer 

connections for segmentation. ReLayNet accomplished precise 

segmentation of seven retinal layers with fluid in pathological 

OCT scans (Roy et al., 2017). Ting et al. developed a clinically 

acceptable DL system for diagnosis of AMD. For AMD diagnosis 

(using 72 610 images) AUC was 0.931(Ting et al., 2017, 2019).  

Fauw et al. developed a new DL architecture in context to reach 

the performance of retinal in a real-world. The DL architecture 

was tested on heterogeneous set of 3D-OCT scans (De Fauw et 

al., 2018). 

 

Schlegl et al. established a fully DL-automated approach for 

measuring macular fluid in OCT images produced by AMD, 

DME, and retinal vein occlusion. They suggested that DL-based 

retinal fluid identification and measurement could yield outcomes 

similar to those of a human performer. They also asserted that DL-

automated assessment of OCT pictures provided a bright future 

for enhancing the precision and dependability of retinal diagnosis 

for clinical investigations, practices, and patient care in 

ophthalmic settings (Schlegl et al., 2018). Lee et al. used a DL 

framework for the automated diagnosis and segmentation of 

retinal diseases. They developed a crucial OCT image 

segmentation model. This methodology was used by the authors 

in 14,884 clinically heterogeneous scans (Lee et al., 2018). 

Kermany et al. provided researchers with a human-labeled dataset 

to train convolutional neural networks (CNNs) to "read" OCT 

image layers and incorporate them into projected disease 

classifications (Kermany et al., 2018). Similar to this, Prahs et al. 

trained their deep learning algorithm to mimic a doctor when 

making treatment decisions (Prahs et al., 2018). 

 

Peng et al. used DeepSeeNet, a DL model for automated 

classification of AMD from CFP images, to evaluate the extent 

and chances of progression of late AMD. DeepSeeNet's 

automated AMD risk categories demonstrated good reliability and 

accuracy (Peng et al., 2019). 

 

In 2020, Peng et al. combined DL and survival analysis to develop 

a frame work for predicting patient risk of late AMD. The model 

attained a five-year C-statistic of 86.4 when validated in case of 

an independent test data set of 601 participants, which 

significantly outperformed that of retinal specialist using two 

existing clinical standards of 81.3 and 82.0, respectively (Peng et 

al., 2020). 

 

Mores et al. used a DL–based segmentation algorithm for 

automatic identification and quantification of multiple OCT 

features, including drusen volume, retinal fluids, serous PED, 

HRF, and SHRM (Moraes et al., 2021). Liefers et al. utilized a DL 

for quantification and segmentation of retinal features that are 

commonly associated with both forms of late AMD. The mean 

intraclass correlation coefficient (ICC) for the model and observer 

was 0.66±0.22 and 0.62±0.21, respectively. (Liefers et al., 2021). 

Bilc et al. developed a support tool based on graph theory and 

geodesic distance for segmentation of retinal layers. The system 

gives control and transparency over the segmentation process by 

allowing a human expert to intervene after each automatic step to 

validate fine-tuning of automatic segmentation. For AMD 

patients, this method has the limitation that the presence of drusen 

prevents accurate segmentation of OS-RPE and RPE-CH 

boundaries (Bilc et al., 2022; Damian & Nicoară, 2022).  

 

4. Conclusion 
 

Retinal biomarkers are crucial for identifying vulnerable patient 

populations and exposures that could cause disease before AMD 

development. Historically, clinical parameters such as drusen 

size, pigmentary abnormalities, and fellow eye status were the 

most important predictors. In clinical trials and clinical practice, 

the central retinal thickness serves as a biomarker to guide 

retreatment management. Fluid localization in different 

compartments offers superior prognostic value. Intraretinal fluid 

reduces vision and is regarded as degenerative if it persists beyond 

the initial therapeutic interval. Subretinal fluid is linked to 

superior visual benefits and a lower rate of geographic atrophy 

progression. The application of AI to ophthalmology practice 

represents a promising step forward in the direction of an 

automated and repeatable analysis of clinical data. AI-algorithms 

have the potential to enhance clinical research and clinical 

practice in AMD diagnosis and treatment, enabling optimal visual 

outcomes. Studies have demonstrated that a number of the most 

important biomarkers can be correctly classified using the most 

recent AI models, not only to diagnose disease but also to forecast 

the progression of disease. This up-to-date mini-review offers a 

thorough explanation of how structural retinal biomarkers serve 

as a valuable tool to diagnose and monitor the progression of the 

disease. Additionally, it summarizes studies related to AI and the 

performance of AI-based algorithms. In this context, clinicians 

will be better able to allocate hospital resources and customize 

care to the needs of specific patients. Future studies can focus on 

the identification of novel analysis methods and biomarkers 

diagnosing AMD. 
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