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Abstract  
Visual and cognitive impairment generally coincide, at least in the elderly. Objective 

visual impairment is connected to an increased risk of incident dementia. Conversely, 

vision and hearing improvement has a positive impact on neuropsychiatric symptoms. 

Other therapies like cataract surgery reduce the risk of developing mild cognitive 

impairment independently of visual acuity. These findings suggest that there might be 

common correlates by which cognitive impairments specifically link to specific ocular 

problems. AQPs are widely expressed and distributed in the nervous system and eye. 

In this short perspective, using empirical evidence, I will demonstrate a role for AQP1 

and AQP4 as possible correlates for concurrence of ocular-brain pathologic pathways. 
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Introduction: 
 

Visual and cognitive impairment usually co‐occur, particularly in the elderly [1]. Just 

very recently, in secondary analysis of a prospective longitudinal cohort study of older 

women with formal vision, it was found that objective visual impairment is associated 

with an increased risk of incident dementia [2]. Furthermore, results of the only 

interventional study in patients with dementia clearly provided the first experimental 

proof that vision and hearing improvement (by merely prescribing and fitting of lenses 

or hearing aids) has a positive impact on neuropsychiatric symptoms [3]. The surprise 

is that other interventions such as cataract surgery reduce the risk of developing mild 

cognitive impairment -albeit not for severe dementia- independently of visual acuity 

[4]. Even more interesting is the results of study carried out by Cavézian et al [5] that 

shows that children with an ophthalmologic disorder may experience difficulties with 

visuospatial tasks despite corrected-to-normal visual acuity. 

 

These reports suggest that there might be a common mechanism by which cognitive 

impairments specifically link to specific ocular problems. Ruiter et al described 

unusual case of a 28-year-old woman with an aquaporin4 (AQP4) antibody-

seropositive neuromyelitis optica spectrum disorder who presented with cognitive 

impairment, symptoms of psychosis and autonomic dysregulation [6]. Similar 

psychiatric symptoms have been previously described before in a few cases [7-13]. 

One might further question whether there is a causal relationship between particular 

cognitive features (such as memory deficits, etc.) and visual acuity and/or ocular 

situations; and whether there are common elements between these two? 

 

For the purpose of this short communication, we focus on aquaporins (AQPs) and only 

visual and cognitive evidence. AQPs are integral are channel proteins and their main 

function is to facilitate transport of water across cell membranes in response to osmotic 

gradients [14]. AQPs are widely expressed and distributed in the nervous system and 

eye. 

 

AQPs in the brain and eye: 

AQPs in the brain: 

 

Three types of aquaporins (AQP1, AQP4 and AQO9) are expressed in the brain. AQP4 

as the most predominant brain water channel is expressed in astrocyte endfeet facing 

brain capillaries, nodes of Ranvier and perisynaptic spaces. It is involved in brain  

 

edema formation and resolution, and clearance of K+ released during neuronal 

activity. AQP1, which is expressed in epithelial cells of choroid plexus is mostly 

involved in cerebrospinal fluid formation. Finally, AQP9, which is present in 

astrocytes and in subpopulations of neurons, is involved in the brain energetic. 
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edema formation and resolution, and clearance of K+ released 

during neuronal activity. AQP1, which is expressed in epithelial 

cells of choroid plexus is mostly involved in cerebrospinal fluid 

formation. Finally, AQP9, which is present in astrocytes and in 

subpopulations of neurons, is involved in the brain energetic. 

 

AQPs in the human lens: 

 

At the ocular surface, it is known that AQP1 is expressed in 

corneal endothelium [15], AQP3 and AQP5 in corneal epithelium 

[16], and AQP3 in conjunctival epithelium [17]. AQP0 is 

expressed in lens fiber cells, AQP1 in lens epithelium, AQP1, 

AQP4 are expressed in ciliary epithelium and AQP4 is expressed 

in retinal Müller cells [16].  

 

On the other hand, by playing central roles in the maintenance of 

ocular lens homeostasis, some AQPs (AQP0, AQP1 and AQP5) 

contribute to the establishment and maintenance of the overall 

optical properties of the human lens. Three aquaporins, AQP0, 

AQP1 and AQP5, each with differential functional properties, are 

extensively and differentially expressed in the different regions of 

the human lens.  

 

Furthermore, the diversity of AQP functionality is increased in the 

absence of protein turnover by age-related modifications to lens 

AQPs that are proposed to alter AQP function in the different 

regions of the lens. These regional differences in AQP 

functionality are proposed to contribute to the generation and 

directionality of the lens internal microcirculation; a system of 

circulating ionic and fluid fluxes that delivers nutrients to and 

removes wastes from the lens faster than could be achieved by 

passive diffusion alone. In this review, we present how regional 

differences in lens AQP isoforms potentially contribute to this 

microcirculation system by highlighting current areas of 

investigation and emphasizing areas where future work is 

required. [18]. 

 

AQPs, myopia and memory: 

 

AQP4 and AQP1, the two primary AQPs of the central nervous 

system CNS), regulate brain water and cerebrospinal fluid (CSF) 

movement and contribute to vasogenic and cytotoxic edema, 

where they control the size of the extracellular and intracellular 

fluid volumes, respectively. AQP4 is crucial to dysfunctions in 

glutamate metabolism, synaptogenesis, and memory 

consolidation [19]. 

 

AQPs and myopia:  

 

Goodyear et al were the first to demonstrate the presence of AQP4 

protein in the chick retina. They showed the association of AQP4 

expression in the inner retina with the initiation of form 

deprivation and the period of fastest axial elongation. The 

increased expression of AQP4 channels near the vitread border 

during the time of rapid growth suggested a novel role for AQP4 

as a channel for movement of retinal fluid into the vitreous in 

form-deprived chicks [20]. Here, it is crucial to recall that AQP4 

is the predominant AQP in the mammalian retina, which is 

reported to be highly expressed on the Müller glial cells. By 

modifying the neurotransmitters, concentrations of ions, and other 

neuroactive substances within the extracellular space between the 

inner and the outer limiting membrane, Müller cells modulate 

neuronal activity. Müller cells preserve extracellular homeostasis, 

particularly with regard to the spatial buffering of extracellular 

potassium (K+) via inward rectifying K+ channels (i.e., Kir 

channels). Both AQP4 and Kir channels are involved in regulating 

the extracellular environment in the retina and brain. In a brilliant 

review, Goodyear et al extensively discussed that during light 

activation AQP4 channels are possibly to be the conduit for 

facilitating fluid homeostasis in the inner retina. AQP4 channels 

play a role in the regulation of ocular volume and growth. Within 

the review, they cite some researches showing that the level of 

AQP4 expression is tightly associated with environmentally 

driven manipulations of light activity on the retina, and 

consequently, the development of myopia [20]. 

 

Furthermore, two recent state-of-the-art studies have shown that 

AQP-1 depletion downregulates the sclera biomechanical 

strength through changing of choroidal thickness (CT) and axial 

length, providing information for better understanding the 

mechanism of myopia development [21;22]. Mechanistically, 

alterations in JNK1 phosphorylation might regulate AQP-1 and 

CT during the recovery from myopia and the recovery time. 

Therefore, JNK1 is suggested as a potential therapeutic target for 

preventing/treating myopia [23].  

 

Myopia and memory:  

 

It is long established that myopia is associated with visual 

memory [24]. At gene level, RASGRF1 gene locus is associated 

with both hippocampus-dependent memory [25] and myopia 

[25;26]. Using a genome-wide association study for refractive 

error in 4,270 individuals from the TwinsUK cohort, Hysi et al 

identified a susceptibility locus for refractive error on 15q25 

(rs8027411, P = 7.91 × 10⁻⁸). They further replicated this 

association in 6 adult cohorts of European ancestry with a 

combined 13,414 persons. Intriguingly, 15q25 locus overlapped 

the transcription initiation site of RASGRF1 [26]. It is notable that 

RASGRF1 is highly expressed in retina and neurons and is 

implicated in retinal function [27] and memory consolidation 

[25;28]. More crucially, Hysi et al experiment showed that 

RASGRF1 (-/-) mice present significantly a heavier average 

crystalline lens.  

 

Chebib et al evaluated effects of cis-3-ACPBPA –which is 

conformationally restricted analogs of the orally active GABA 

(B/C) receptor antagonist (3-aminopropyl)-n-butylphosphinic 

acid (CGP36742 or SGS742) – on dissociated rat retinal bipolar 

cells and dose-dependently inhibited the native GABA(C) 

receptor. They showed that cis- and trans-3-ACPBPA when 

applied to the eye as intravitreal injections in the chick model 

prevents experimental myopia development and inhibits the 

associated vitreous chamber elongation in a dose-dependent 

manner. Interestingly, doses 10 times greater than needed to 

inhibit recombinant GABA(C) receptors created the anti-myopia 

effects. More intriguingly, cis- (30 mg/kg) and trans-3-ACPBPA 

(100 mg/kg) when administered intraperitoneally in male Wistar 

rats, enhanced learning and memory; compared with vehicle there 

was a statistically significant reduction (p < 0.05; n = 10) in time 

for rats to find the platform in the Morris water maze task. In short, 

the memory and refractive effects of CGP36742 may partly be 

attributed to its GABA(C) activity, suggesting a causal link 
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between myopia-improvement and memory enhancement [29]. It 

worth to remind that GABA(C) receptors play a role in memory-

related disorders [30], myopia [31] and circadian rhythms [32]. 

 

As for high hyperopia which is severe form of refractive error, 

genetic factors are key in its development, however the exact gene 

responsible for this condition was mostly unknown until very 

recently. In a large Chinese family with autosomal dominant high 

hyperopia, Xiao et al [33] using a genome-wide linkage scan 

mapped the high hyperopia to chromosome 11p12-q13.3, with 

maximum log of the odds scores of 4.68 at theta = 0 for D11S987. 

Furthermore, parallel whole-exome sequencing manifested a 

novel c.3377delG (p.Gly1126Valfs*31) heterozygous mutation in 

the MYRF gene within the linkage interval. Whole-exome 

sequencing in other 121 probands with high hyperopia detected 

other novel mutations in MYRF within two other families: a de 

novo c.3274_3275delAG (p.Leu1093Profs*22) heterozygous 

mutation and a c.3194+2T>C heterozygous mutation. It was 

found that all three mutations are located in the C-terminal region 

of MYRF and are anticipated to lead in truncation of that portion. 

Interestingly, two patients from two of the three families 

developed angle-closure glaucoma. These findings support that 

truncation mutations in the C-terminal region of MYRF are 

responsible for autosomal dominant high hyperopia and provide 

preliminary clues for understanding the functional role of the C-

terminal region of this critical myelin regulatory factor, as well as 

the molecular pathogenesis of high hyperopia and its associated 

angle-closure glaucoma.  

 

Here, it worth to remind that demyelination is a common 

pathological characteristic of a large number of 

neurodegenerative diseases including Huntington's disease (HD) 

and multiple sclerosis (MS). Yin and colleagues [34] showed that 

reduced MYRF phosphorylation inhibits MYRF's binding to 

mutant huntingtin and increases the expression of myelin-

associated genes, suggesting that PRKG2-regulated 

phosphorylation of MYRF is involved in demyelination and can 

serve as a potential therapeutic target for reducing demyelination 

 

Conclusion:  
 

Collectively, above mentioned findings demonstrate a possible 

role for AQP1 and AQP4 as common correlates for concurrence 

of ocular-CNS pathologic pathways.  

 

In this line, particular association between AQP1 [35;36], AQP4 

[36;37], and AQP9 [38] with Alzheimer diseases (AD) is well-

established. The further elaboration of this idea leads into the 

involvement of Kir4.1 channel which deserves a separate paper. 
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