

Open Access

Short Review

IG V-L K appa Expression from Sea Star Igkappa Gene

Michel Leclerc

Immunology of Invertebrates, Div: Biochem/Biology, Orléans University (France) 556 rue Isabelle Romée, 45640 Sandillon (France).

Article Info

Received: October 11, 2021 Accepted: October 20, 2021 Published: October 29, 2021

*Corresponding author: Michel Leclerc, Immunology of Invertebrates, Div: Biochem/Biology, Orléans University (France) 556 rue Isabelle Romée, 45640 Sandillon (France).

Citation: Michel Leclerc. (2021) "IG V-L K appa Expression from Sea Star Igkappa Gene.", Aditum Journal of Clinical and Biomedical Research, 3(2); DOI: http://doi.org/010.2021/1.1057.

Copyright: © 2021 Michel Leclerc. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly Cited.

Abstract

The sea star IGKappa gene was cloned in 2014 by the use of primers. It was compared in the present work to Vertebrate Immunoglobulin genes. A high identity was found with these last ones. A length of 105 amino acids fit with Immunoglobulin domain **Introduction:**

The sequence of the sea star Asterias rubens IGKappa gene was described by our team, in 2014(Ref 1). Since we have tried to find homologies between this gene and upper genes from lower Vertebrates to human genes.

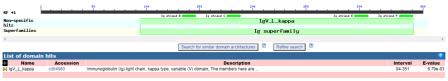
We report, in the precedent paper, results obtained with upper Vertebrate genes by the use of blasts directed against these last ones (Ref 2, 3)

Results:

The sequence of the sea star IGKappa gene is the following (Ref 1):

5'GGA TCC GGA GGA ATG

CGTGGCAACATGGCGTCTCTATGGATGTTCTTCTT


TGTCGTGGGGATAACTTTACAACGGAGTTTGGCGATTTACACGTTTCGCG AGCAACCGTCGGACACTAGCGCGTTGCAGGGGAGCACAGTGGTGCTTCA C

TGCTCCGTTGAGCAGTACATAAACACCACGGCCATCGTTTGGTGGAGCCG TGACTCGGTCATCAGCCACAACAAGACCTGAAACTGTCCAGTCTAAAC A

CCGACCAGCTCCAAAGGTACTCGATTTCAGGCGACGCATCTCGGGGGGGA A

TTCAACCTTAAAATAGTGAACTTTACCGCCACAGACGCCGCCAGTTACCG CTGTCAGATG TAA GAA TTC3'

The bioinformatic work leads us to show similarities between sea star IGKappa gene and Immunoglobulin domain from Vertebrates

Non-specific hits: IgV_L_Kappa

[Non-specific hit, evalue = 6.79e-03] cd04980, Immunoglobulin (Ig) light chain, kappa type, variable (V) domain; The members here are composed of the immunoglobulin (Ig) light chain, kappa type, variable (V) domain. This group contains the standard Ig superfamily V-set AGFCC'C"/DEB domain topology.

Super-families: Ig superfamily

[Superfamily, evalue = 6.79e-03] cl11960, Immunoglobulin domain; The members here are composed of the immunoglobulin (Ig) domain found in the Ig superfamily. The Table 1, as shown below, resumes our results:We observe again the Immunoglobulin domain and a particular one without immune function.

60	100	150	200	250	300	360	600	450	500	650	600	650	700	760	800	850	
XP_033635901.1	· Find:		~ 4	⇒		a, 🗰 😤								× Tools -	Tracks •	2. Download	.0?
100	199	150	1299	250	380	350	400	458	580	558	699	lese	788	758	1888	1858	1.1
20				the second se				And and and and			And in the other designs of the local data	and the second se	7 MW	and the state of t			
tin Features		100			300			(H) (H)					700				10
			200	Liv									799				T C
ein Features on Features -					300			in n									
on Features -	CDD							ine protein Lo					C085844				± 0
	CDD							(is) (ii) rized protein LO									4.0

Two region features: a. Region Ig Comment: Immunoglobulin Location: 47...151 Length: 105 aa CDD: 214652

b. COG5644Comment: U3 small nucleolar RNA-associated protein 14 References:
(function unknown)Location: 731...8661. VinceLocation: 731...8662. MarclCDD: 227931200-3Table 1: PREDICTED: Asterias rubens uncharacterized3. MarclLOC117296905 (LOC11729690539(D)

Conclusion: We retain from this bioinformatic analysis, the

presence of Immunoglobulin domain in the sea star IGKappa gene with the CDD:214652. This gene, nevertheless, seems less evolved that the Ophuirid IGKappa gene we discovered 1 month ago (Ref4) in terms of Immune functions.

These 2 genes from Echinodermata (Invertebrates) bring us a new light in Immunogenetic World and mainly in Comparative Immunology between Invertebrates and Vertebrates animals.

- 1. Vincent N et al (2014) Meta Gene 2:320-22
- 2. Marchler-Bauer A et al (2017) Nucleic Acid Res 45 (D): 200-3
- 3. Marchler-Bauer A et al (2011) Nucleic Acid Res 39(D):225-9
- 4. Leclerc M (2021) J. Clin. Class. Immunol 1(1)