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the general population (Brooks & Webster, 2020).  

 

In absence of vaccination or community immunization and in 

order to halt the spread of the infection during the peak of the of 

causing serious damage to their workers’ health, well-being, and 
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Abstract:  
The study of the effect of periodic exposure to relaxation oscillations occurring in a 

Van der Pol-type oscillator greatly influenced the development of mathematics in this 

direction. Early studies of such models demonstrated both bistability (the possibility of 

observing one of two modes depending on the initial conditions) and aperiodic 

dynamics [1-2]. These and some other results predetermined the development of the 

theory of maps with complex dynamics [3]. Studies of periodic effects on nonlinear 

oscillators have shown that multistability and aperiodic dynamics can be explained by 

considering one-dimensional circle maps (functions that map the circle's circumference 

to themselves, see below) [4-5]. It was also shown that such maps can demonstrate 

aperiodic dynamics as a result of a sequence of bifurcations of doubling the period [6-

9].  

Keywords: the phase capture region; refractoriness; atrial ventricular pacemaker; AB-

block; fibrillation  

1. Introduction  

 

A huge number of works have been devoted to the study of the dynamics of continuous 

circle maps both from the point of view of mathematical interest and from the point of 

view of attitude to physical and biological problems [10-12]. The circle maps can also 

be discontinuous; the bifurcations of these maps are not so well studied. Among the 

studied discontinuous maps, we can distinguish a piecewise linear monotonically 

increasing irreversible circle map. Keener [13] considered mappings in the case when 

they have at least one fixed point. Such maps were considered in ergodic theory (see, 

for example, [14]). The dynamics of irreversible discontinuous maps that do not have 

fixed points was studied for piecewise linear models in the application to the study of 

neural networks and analog-to-digital converters. But we are primarily interested in the 

applications of circle mapping to the study of cardiac arrhythmias. Bub and Glass [15] 

considered the possible dynamics of a generalized class of discontinuous irreversible 

maps of a circle without fixed points and applied the results to a mathematical model 

of a ventricular or ventricular parasystole. In [16-22], attempts were also made to model 

the parasystole, but the first who guessed to use the circle mapping to study the heart 

was academician V. I. Arnold [23]. Although Glass recognized that the ACS and the 

ectopic pacemaker, as well as the ACS (sinoatrial node, covers the atrial myocardium) 

and having come to the AV (atrioventricular node, covers the ventricular myocardium) 

do not generate impulses independently, but interact in a complex way depending on 

the electrophysiological properties of the heart tissue, in his works the mutual influence 

of oscillators was not taken into account, even when modeling the induced parasystole 

(sinus pacemaker and ectopic affect each other), not to mention pure parasystole (when 

the pacemakers do not interact) [24].   

The circle map curve  the phase response and the Arnold tongues of  

 

Consider some physical quantity ξ, which reflects the internal state of the biological 

oscillator. Let the eigenfrequency of the oscillator be equal T0. Let's call a marker any 

event that can be clearly seen in the experiment, which is reached by the value ξ only 

once per period. Such a marker may be, for example, the beginning of the action 

potential in the cardiac preparation. Let's define the oscillator phase as follows. The 

phase of an arbitrarily selected marking event (for example, the maximum value of ξ) 

is assumed to be zero. At any next time t, 0 < t < T0, the phase is defined as φ = t ∕ T0 

(mod1). Since the rhythm is restored after the perturbation of the system, the introduced 

phase completely determines the state of the system.  

Suppose that an external periodic perturbation acts on a nonlinear 

oscillator. Then each external influence shifts the state of the system to 

a new state (1):  
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(mod1). Since the rhythm is restored after the perturbation of the 

system, the introduced phase completely determines the state of 

the system.  

 

Suppose that an external periodic perturbation acts on a nonlinear 

oscillator. Then each external influence shifts the state of the 

system to a new state (1):  

φn+1 = φn + f (φn) (mod1).                                                                                            

(1) 

 

The function f (φn) is called the phase response curve (PRC) [25] 

and determines the phase change after the stimulus. It is 

convenient to represent the points f (φn) of the system state lying 

on the circle of the unit radius. Then, by iterating the mapping (1), 

one point of the circle is converted to another point of the same 

circle. If the circle map is continuous, then it can be characterized 

by a number called the topological degree and equal to the number 

of passes through φn+1  the unit circle during  f (φn) the time it 

passes once. In periodic perturbations of self-oscillations with a 

stable limit cycle, the dynamics is often described by maps of a 

circle with a topological degree 0 (when the over-threshold 

response gives rise to a new cycle) or 1 (which expresses a sub-

threshold response to stimulation). The different types of circle 

maps are shown in Fig.1.  

 

Along with the topological degree, an important characteristic of 

the circle display is the number of rotations. We define it as the 

time average ratio of the external perturbation period to the period 

of the perturbed oscillator. If the rotation number is rational, ρ = 

M/N (here M is the number of cycles of the stimulator, and N is 

the number of cycles of the nonlinear oscillator), then the 

dynamics of the system will be periodic with the capture of the 

multiplicity phase N/M. If the rotation number is irrational, the 

system demonstrates quasi-periodic or chaotic behavior.  

 

In many cases, the disturbance by a single pulse of a 

spontaneously oscillating system leads to a phase shift of the 

current rhythm (see, for example, [26] and references there). The 

magnitude of the shift depends on both the magnitude of the 

stimulus and its phase in the cycle. The graph of the dependence 

of the new phase on the previous phase (i.e., PRC) is either a 

continuous circle map with a topological degree of 1 or 0, or a 

discontinuous function.      Phase shift experiments were 

performed for a large number of different systems. We are 

interested, first of all, in the phase response curve, experimentally 

obtained in the study of cardiac drug. In [27] the duration of the 

cycle of spontaneous oscillations of Purkinje fibers after 

stimulation by short pulses of electric current was measured. The 

obtained phase response curve of the Biphase form is shown in 

Fig.2. Based on the study of this experimental material, the 

following generalizations can be made [27].  

 

 
Fig.1. Different types of circle maps [25]: (a) reversible, 

topological degree 1; (b) irreversible, topological degree 1; (c) 

piecewise continuous; (d) topological degree 0.  

 

 
Fig.2. Phase response curve of cardiac tissue obtained 

experimentally [27]. The graph shows the dependence of the 

duration of the perturbed cycle (expressed in relative parts from 

the duration of the cycle in the control) on the phase of the cycle 

in which the pulse is applied.  

 

After the disturbance, the rhythm is usually restored (after the 

transition process) with the same frequency and amplitude as 

before the disturbance, and its phase is shifted. Depending on the 

phase, a single stimulus can result in either an elongation (early 

stimulus) or a shortening (late stimulus) of the duration of the 

perturbed cycle. At some amplitudes of the stimulus, obvious 

discontinuities are observed. To further study the dynamics of any 

constructed model, it is necessary, having experimentally 

obtained PRC, to find a good analytical approximation of this 

curve. This will allow to investigate the main features of the 

behavior of the system. The main characteristic of the desired 

function is the need to directly depend on only two physical 

parameters: the amplitude of the stimulus and the phase of the 

applied perturbation. All other (so-called "internal") parameters 

describing the course of the curve should (ideally) be reduced to 

these two. 

  

One of the simplest (and coarsest) approximations of a given PRC 

is the sinusoidal function, which ultimately results in a map of the 

form (2):  
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φn+1 =  f (a,b,φn) = φn + a + b sin 2πφn (mod1).                                                                                                          

(2)  

 

Where a and b are constants. However, despite its simplicity, this 

approximation correctly reflects the qualitative structure of the 

phase portrait of the system under study.  

 

 
Fig.3. Schematic diagram of Arnold tongues. In shaded areas 

there is a steady phase capture. There are always other zones 

between any two capture zones.  

 

The analysis of bifurcations of reversible circle maps was 

undertaken in the last century by A. Poincare and still attracts 

much -by V. I. Arnold [23] (see also [28] and the references given 

there). For fig.3 the bifurcation diagram of the circle 

diffeomorphism on the parameter plane (b, a) is shown. This 

diagram is divided into areas called language (or horns) of Arnold, 

which correspond to the sustainable capture phase ratio N/M (i.e., 

N cycles of the stimulator has M cycles of a nonlinear oscillator). 

Arnold languages exist for all rational relations N/M, where N and 

M are mutually Prime numbers. This means that there are an 

infinite number of Arnold languages that correspond to all 

possible ratios of frequencies of the stimulator and the perturbed 

oscillator. Between any two languages corresponding to N/M and 

N*/M* phase captures, there is another capture region 

corresponding to the capture of multiplicity phases 

(N+N*)/(M+M*). The structure shown in Fig.3, is the usual 

behavior for low stimulus amplitudes in simple theoretical models 

discussed below. However, as the amplitude of the periodic effect 

increases, this structure collapses.  

 

2. Discrete models  
 

In this section, we will consider two leading centers (AB the 

blockade of one of the leading centers) that can be pacemakers in 

the heart tissue, build a model of such interaction and investigate 

its behavior. 

 

Phase diagrams for one-way interaction of pacemakers 

 

First, let's consider the mapping (2) from the form (3):  

xn+1  = xn + a + γh(xn)           (mod1).                                                                                                                            

(3)  

 

 

 

 

 

 

 

 
Fig.4.  a)Stable phase captures of multiplicity 1: k. b) The 

structure of some phase capture regions for piecewise linear 

mapping of the circle (a). Fig. 4. a)Stable phase captures of 

multiplicity 1: k. b) The structure of some phase capture regions 

for piecewise linear mapping of the circle (a). 

We find the conditions for the existence of stable captures of 

phases of multiplicity 1:k of the mapping (3). Stable captures of 

1:k of this mapping exist if (4)is fulfilled:  

0 1/ 2,

.k a k



 

 


−   +                                (4)        

These analytically found captures are shown in Fig. 4a. The 

location of the phase capture regions in the parameter space (α, γ), 

obtained as a result of a numerical (calculations were performed 

in Pascal) study of the system (3), is shown in Fig. 4b. Without 

limiting generality, we chose the interval of variation of the 

parameter α, which determines the ratio of periods, in the range 

from 1 to 2. Different colors correspond to different areas of phase 

capture of multiplicity N:M (for N cycles of an external stimulus, 

there are M cycles of a nonlinear oscillator). The dotted line 

indicates the value of γ = 1/4. A simple analysis of the system (3) 

shows that below the value of γ = 1/4, the mapping is monotonic 

(see below), the phase captures are separated from each other and 

are Arnold languages.  Above the specified value, the picture 

becomes more complicated: the grips begin to overlap, which 

indicates the appearance of multistability. The mapping (3) is 

monotonic fi
'(xn), i=1,2,3, are simultaneously positive or negative, 

i.e. the systems of inequalities (5) are fulfilled:  

 

1

2

3

( ) 1 4 0,

( ) 1 4 0,

( ) 1 4 0,

n

n

n
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f x
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




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
  = + 

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    ↔    

1

2

3

( ) 1 4 0,

( ) 1 4 0,

( ) 1 4 0.

n

n

n

f x

f x

f x







  = − 

  = + 


 = − 
                                                                 (5) 

 

After their transformations and the exclusion of an incompatible 

system, we obtain conditions for the amplitude of the stimulus γ: 

-1/4 < γ < 1/4, i.e. below the line γ = 1/4, the mapping (3) is 

monotonic.  

 

3. The sinusoidal model  
 

As in the previous paragraph, we will consider the case of a one-

way connection of oscillators: h(x)=sin(2πx).  
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4. Areas of phase capture in the one-way interaction 

of pacemakers, taking into account refractoriness  
 

First, let us again consider the situation when a non-linear 

oscillator is affected by a constant external disturbance 

h(x)=sin(2πx). In this case, the display (2) will become the 

standard circle display. Let us consider the phase patterns of the 

display (2) when taking into account the refractoriness period. In 

the simplest case, the presence of a period of refractoriness can be 

expressed using such a parameter δ that if the stimulus falls within 

the interval [0; δ], then h (x)= 0. Let us assume, for example, δ=0.1 

. The general structure of the phase capture regions obtained as a 

result of a numerical study of the system (6) is shown in Fig. 5a. 

Therefore: 

1

, 0 (mod1)

sin(2 ), 1 (mod1).

n n

n

n n n

x a x
x

x a x x



  
+

+  
= 

+ −        (6)                  

 

Note that with this account of refractoriness, the PRC becomes 

discontinuous (see Fig. 5b, red line). 

 

 
                                                                                                    

Fig.5. a) A phase diagram for the sine representation of a circle 

taking into account the refractoriness period (6). b) Sinusoidal 

approximations of the PRC: discontinuous, corresponding to the 

representation (6) (red); continuous, specifying the system (6) 

(blue).   

 

 5. Analogy with pathological heart rhythms  
 

In conclusion of this section, we will draw an analogy between 

the results obtained and the pathological conditions of the heart 

tissue. Using the constructed models, it is possible, for example, 

to describe the interaction of the sine and ectopic pacemakers, 

ACS and AWU, and the effect of an external disturbance on the 

sine rhythm, shown in Fig. 6.   

 

 
Fig.6. The model describes the interaction of sinus and ectopic 

pacemakers, ACS and AVU, and the effect of an external 

disturbance on the sinus rhythm with pathological conditions of 

the heart tissue.   

 

If, for example, we consider the first pulse oscillator of the ACS, 

and the second-the AV, then we can find that some stable phase 

captures correspond to the pathologies observed in clinical 

practice. In this case, among the various constructed captures, 

there are both the normal sine rhythm (1:1 multiplicity capture) 

and the classical Wenckebach rhythms (N:(N-1) multiplicity 

captures) and N:1 AB-blockades. If the first pulse system is 

considered AV, and the second-SAU, then inverted Wenckebach 

rhyth ms appear (similar to direct ones, but in which the roles of 

the ventricles and atria change), observed in some patients. It 

should be noted that the considered response functions for various 

approximations of the form of the function h(x) are model 

functions. They were taken to analyze the characteristic features 

of the dynamics of two nonlinearly interacting oscillation sources. 

In practice, these functions must be selected taking into account 

additional physical assumptions about the nature of the interaction 

and take into account experimental data on the response of a 

separate oscillatory system to single pulses of external 

perturbation. For example, in [20], the effect of short pulses on 

aggregates of spontaneously oscillating cells from the embryo's 

heart was considered. The experimentally obtained phase 

response curves were investigated by exponential functions, and 

the "internal" parameters were chosen for reasons of the best 

correspondence of the curve graphs to the experimental points. 

Their dependence on physical parameters was also chosen in a 

similar way. As a result, the phase diagram obtained numerically 

corresponded quite well to the real dynamics of the system. 

Knowledge of such areas and the dynamics of the system in these 

areas allows you to remove the system from an undesirable 

synchronization mode to a more favorable mode by external 

perturbation (for example, by a series of single pulses), which is 

vitally important. We also note that the analysis of phase diagrams 

makes it possible to find ways to control such systems. For 

example, we can consider the effect of an additional periodic 

pulse action on the behavior of interacting oscillatory subsystems. 

The study of possible modes of behavior of such a system by 

varying the frequency and amplitude of an external disturbance 

will allow to bring its dynamics to a predetermined one, for 

example, to the complete suppression of the ectopic pacemaker by 

sine. This problem, considered in the next section, is very relevant 

for the general theory of control of nonlinear dynamical systems 

and excitable media, in particular, heart tissue, which is 

satisfactorily described by the models given in this paper (see also 

[54-55]). Fig.7 shows a real electrocardiogram of atrial 

fibrillation.  

 

 
Fig.7. A. L. Myasnikov Institute of Cardiology, Moscow, patient: 

S. P. Balashova.  
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6. Relaxation model of Poincare oscillator  
 

A widely used idealization of some periodically stimulated 

oscillators is the Gelfand and cetlin model [29], or the relaxation 

model [26,30-32]. In this model, the value referred to as activity 

increases to the upper threshold, leading to some event. Then the 

activity returns to the lower threshold. If the rates of rise and fall 

of activity to the thresholds are fixed, and the thresholds are also 

fixed, then a periodic sequence of events is generated, the 

frequency of which is easy to determine. Periodic perturbation in 

relaxation models can be included in the form of threshold 

modulation, usually sinusoidal.  

 

In some works, instead of sinusoidal modulation of the threshold, 

other functions were considered, for example, Delta function 

peaks, rectangular and triangular pulses, etc. (see references in 

[33]). Arnold in [23] briefly discussed the possibility of using 

obtained model in the relaxation mapping to study the rhythms 

Wenkebach. Subsequent researchers found that piecewise linear 

monotone, discontinuous maps (Fig.1c), similar to those found in 

the relaxation model, appear in theoretical models of atrial-

ventricular communication in AB blockade [34,35]. Such 

mappings can be experimentally measured and used to predict 

complex rhythms observed in humans [36].  

 

Despite the wide application, the relaxation model too 

simplistically describes the interaction of the oscillator and the 

external perturbation; much more vital is the use of models that 

take into account the individual response of the system to the 

external perturbation. Cardiologists usually assume that the 

nonlinear ODE that contains oscillation with a stable limit cycle, 

represent a suitable model for the generation of periodic activity 

of the heart [37]. In the case where the limit cycle is quickly 

achieved after a single stimulus, and the action of a single stimulus 

is known, it is possible to calculate the effect of periodic 

stimulation. The prototype of the model with a periodically 

perturbed limit cycle is the van der Pol equation with a sinusoidal 

perturbation.  

 

Consider the effect of a periodic sequence of short pulses on the 

oscillations described by a system with a limit cycle (see, for 

example, [33]). The simplest model is Poincare oscillator. In this 

model, a stable limit cycle is a circular trajectory. The perturbation 

is a horizontal displacement of magnitude b, and after stimulation, 

the system rapidly approaches the limit cycle along its radius.  

If it is the phase φn immediately preceding the nth stimulus, then 

the phase preceding (n +1) the nth stimulus is simply   φn+1 = τ + 

g(φn, b) (mod1).  

 

Where τ is the time interval between periodic stimuli normalized 

for the eigenfrequency of the autogenerator, and PRC g(φ) is 

easily calculated [37-39].  

 

This theoretical model for periodically perturbed limit cycles was 

independently proposed by several researchers [38-41]. Since for 

a simple model with a limit cycle RPC is calculated quite easily, 

it is possible to use analytical and numerical methods to determine 

the detailed structure of the phase capture zones as a function of 

the amplitude b and frequency a of the stimulus. In this example, 

for low stimulus amplitudes (b ≤ 1), the capture zone topology has 

a classical Arnold structure (Fig.3), and the circle display is a 

reversible degree 1 display. However, for b > 1, the dynamics is 

described by displaying a circle of zero topological degree. The 

extensions of Arnold's languages have a more complex form. 

There are bifurcations in the system, leading to doubling of the 

period and chaos.  

 

This model, although different from the exact 

electrophysiological models, nevertheless, surprisingly well 

reproduces many features observed in experiments on the study 

of periodically perturbed aggregates of some heart cells [42]. For 

example, glass et al. observed period doubling bifurcations and 

chaotic dynamics in the stimulation of heart fiber aggregates at 

frequencies slightly lower than the internal frequency at moderate 

stimulus amplitude. The same behavior was observed in the 

Poincar \ ' e oscillator [38,39,41].  

 

The study of periodic exposure to the limit cycle has a direct 

application to the study of ventricular, or ventricular parastole. If 

the ectopic beat occurs outside the period of ventricular 

refractoriness, it is observed on the electrocardiogram, and the 

next normal (sinus) beat is blocked. A similar model can be used 

to predict the sequences of sinus and ectopic beats in patients with 

ventricular parasistole (see, for example, [43-47]). In work [47] it 

is established that the model of pure parasistole (where sinus and 

ectopic pacemakers coexist without mutual influence on each 

other) corresponds well to reality.  

 

However, the model of the perturbed cycle does not answer the 

question of what happens at large relaxation times to the limit 

cycle (this model is built on the assumption of a rapid return of 

the system to it, which allows only one phase variable to be taken 

into account in the calculations). In addition, it is not known what 

happens when the values of the parameters at which the existence 

of the limit cycle is controversial. Thus, it seems necessary to 

consider a model based on more General principles that take into 

account the change in the length of the perturbed cycle depending 

on the type of PRC without any additional conditions imposed on 

the behavior of the a priori system [48].  
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