# Uncontrolled Hypertension and Its Associated Factors Among Hypertensive Patients On Follow-Up In Bale Zone Hospitals, Southeast Ethiopia 

Anwar Tahir Buta ${ }^{1}$, Abulie Takele Melku ${ }^{\text {* }}$ and Geroma Morka Donka ${ }^{2}$<br>${ }^{1}$ Madda Walabu University Goba Referral Hospital School of Health Science, lecturer.<br>${ }^{1}$ Madda Walabu University Goba Referral Hospital School of Health Science.<br>${ }^{2}$ Madda Walabu University Goba Referral Hospital School of Health Science.

## Article Info

Received: March 31, 2021
Accepted: April 02, 2021
Published: April 06, 2021
*Corresponding author: Abulie Takele Melku, 1Madda Walabu University Goba Referral Hospital School of Health Science, lecturer.

Citation: Anwar T Buta, Abulie T Melku, Geroma M Donka,. "Uncontrolled Hypertension and Its Associated Factors Among Hypertensive Patients on Follow-Up in Bale Zone Hospitals, Southeast Ethiopia". International Journal of Epidemiology and Public Health Research, 1(1); DOI: http;//doi.org/03.2021/1.1004.

Copyright: © 2021 Abulie Takele Melku. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


#### Abstract

Background:-The prevalence of uncontrolled hypertension among hypertensive patients is high and the reason for uncontrolled hypertension is not well understood globally. It raises the risk of cardiovascular diseases, stroke, and chronic kidney disease causing morbidity and mortality. Objective:-To assess the prevalence of uncontrolled hypertension and its associated factors among hypertensive patient on follow up in Bale Zone Hospitals, Southeast Ethiopia. Methods:- A facility-based cross-section study was conducted in five Bale Zone Hospitals from March to April 2020 after Pretest. Systematic random sampling was used for the selection of 421 participants. Data were collected through face-to face interviews using a semi-structured questionnaire. Data was entered in Epi data version 3.1 and analyzed in SPSS version 25. Descriptive statistics, bivariate and multivariate analysis was done and p-value $<0.05$ at $95 \% \mathrm{CI}$ was considered statistically significant. Result:- In this study, $57 \%$ of the 412 participants had uncontrolled hypertension. The average age of respondents was $53.8 \pm 11.9$ SD years. Experience with medicinal side effects (AOR=1.975, $95 \% \mathrm{CI}$ : 1.056-3.695), Comorbidities (AOR=1.988, $95 \% \mathrm{CI}, 1.026-3.85$ ), physical inactivity (AOR=1.972, $95 \% \mathrm{CI}$ : 1.185-3.282), salt use (AOR=1.914, 95\% CI: 1.106-3.313), fruit and vegetables not consumed (AOR=6.106, $95 \% \mathrm{CI}: 1.261-29.569$ ) were positively associated with uncontrolled hypertension. Whereas family or other care assistance (AOR $=0.485$, $95 \% \mathrm{CI}: 0.266-0.886$ ) and unconsumed fat (AOR=0.249, $95 \% \mathrm{CI}: 0.135-0.459$ ) were adversely correlated with uncontrolled hypertension. Conclusion:- The prevalence of uncontrolled hypertension in five public hospitals in the Bale Zone was large. Experience with side-effect treatment, salt use, not eating fruit and vegetables, physical inactivity and comorbidity were positively associated with uncontrolled hypertension while relatives or other caregivers and non-consumers with fat were negatively associated with uncontrolled hypertension. Educating patients about a healthy lifestyle and the treatment of hypertension related complications is required.


Key Words; hypertension; uncontrolled hypertension; controlled hypertension

## Background

Uncontrolled hypertension is characterized as sustained high blood pressure (Systolic blood pressure greater than or equal to 140 mmHg and/or diastolic blood pressure greater than or equal to 90 mmHg for individuals less than 60 years of age) and systolic blood pressure greater than or equal to 150 mmHg and/or diastolic blood pressure greater than or equal to 90 mmHg for individuals 60 years of age.

According to WHO 2017 study, reducing hypertension decreases the risk of stroke by $30 \%$, myocardial infarction by $25 \%$, chronic kidney disease by $23 \%$ (WHO, 2017a). However, several studies in various parts of the world have shown that the prevalence of uncontrolled hypertension among hypertensive follow-up patients is large. In Thailand, $54.4 \%$ of hypertensive patients accompanied by uncontrolled hypertension(Suprawee Meelab et al., 2019). In China, the prevalence of
uncontrolled hypertension among hypertensive patients was $55.4 \%$ (Li Yang et al., 2014).

Uncontrolled hypertension is becoming a health issue in developing countries, including Ethiopia. According to the WHO study on NCDs (non-communicable diseases), the leading cause of death from NCDs in Ethiopia was cardiovascular disease. Hypertension was at risk for $15.9 \%$ of the adult population, of which about $14.4 \%$ of hypertensive patients had uncontrolled hypertension in Ethiopia (Fassil shiferaw, 2019). In Ethiopia, NCDs account for $42 \%$ of morbidity, $27 \%$ of premature death (death before 70 years of age), $69 \%$ of impairment and $16 \%$ of uncontrolled hypertension in 2015 (Misganaw A et al., 2017).
52.7 \% of hypertensive patients accompanied by uncontrolled hypertension at Jima Specialist Hospital. Understanding the incidence of uncontrolled hypertension and its related factors used to minimize mortality and disability due to uncontrolled hypertension (Bekele Tesfaye et al., 2017). Hypertension is a global health problem. According to WHO, 2019 Study Worldwide, 1.13 billion people have hypertension, two thirds live in low-and middle-income countries, and four in five hypertensive patients have uncontrolled hypertension (WHO, 2019). In another study, about one third of US adults or 86 million people had hypertension of this 35.8 million had uncontrolled hypertension (Somnath pal, 2018).
Uncontrolled hypertension is a risk of cardiovascular disease and stroke. This results in $24 \%$ of myocardial contravention of $23 \%$ of pulmonary edema, 16 per cent of hypertensive encephalopathy and 12 per cent of congestive heart failure (Somnath pal, 2018). According to the WHO 2017 survey, blood pressure is also rising the mortality rate due to cardiovascular disease. If blood pressure above $155 / 95 \mathrm{~mm} \mathrm{Hg}$, which results in a risk of death from heart failure, increases four times if usual, eight times as usual at 175/105 and 16 times as normal at 195/115 (WHO, 2017a).
According to the WHO 2017 survey, the prevalence of uncontrolled hypertension in high-income countries is lower. However, the burden of uncontrolled hypertension rises in lowand middle-income countries such as sub-Saharan Africa, South Asia and Central and Eastern Europe (WHO, 2017b). In low and middle-income countries, the health system is not well prepared to provide care for non-communicable diseases (NCDs) such as hypertension and hypertension control awareness, and the need for continuous treatment is small (WHO, 2017c).
Uncontrolled hypertension was the leading risk factor for death and the third cause of disability in low-and middle-income countries. The study found that low levels of diagnosis and hypertension management were achieved in rural areas of low to middle-income countries, primarily due to difficulties in accessing healthcare, costs in accessing health centers, distance to clinics, and the disparity in standard of care given had an effect on hypertension control (C. K. Chow et al., 2013). Sedentary lifestyle and missing appointments were associated with uncontrolled hypertension among follow-up hypertensive patients in Thailand (Suprawee Meelab et al.,2019
In Africa, the prevalence of uncontrolled hypertension varies across the country. Studies in Ghana have shown that $57.4 \%$ of patients with hypertensive follow-up have uncontrolled hypertension (Sarfo FS et al., 2018). Of the 922 hypertensive patients in Morocco, 675 (73\%) had uncontrolled hypertension (Touria Essayagh et al . , 2019) and another study in South Africa found that 75.5 per cent of hypertensive patients had uncontrolled
hypertension (Oladele Vincent Adeniyi et al . , 2016).
In Ethiopia, few studies have been performed on the prevalence of uncontrolled hypertension and associated factors among hypertensive patients, and prevalence also varies in different countries. According to WHO, the 2019 hypertension management study is still a concern in Ethiopia, with only 1 in 67 hypertensive adult patients having controlled hypertension (Fassil shiferaw, 2019). In other research performed in Ethiopia, the prevalence of uncontrolled hypertension ranged from $52.5 \%$ to 69.9\% in Ayder Comprehensive Specialized Hospital and Zewditu Memorial Hospital, respectively.
Overweight, physical inactivity and comorbidity were found to be associated with uncontrolled hypertension (Gebrewahd Bezabh Gebremichael et al . , 2018, Yazie D et al . , 2018). Annual mean hypertension cost in Ethiopia was ETB 2510.32 (\$91.72) $\pm$ 2152.80 (78.65) per patient. The direct medical costs are $60.81 \%$, the direct non-medical costs $12.17 \%$ and the indirect costs $27.02 \%$ (Elsabet Adane et al . , 2018). In another West Showa report, the average annual cost of hypertension disease among follow-up patients was US\$ 267.2 per patient. As a result, the annual average direct and indirect costs were US\$ 136.6 and US\$ 130.7 per patient, respectively (Addisu Bogale et al., 2019).

Managing hypertension eliminates problems due to uncontrolled hypertension. However, more than half of hypertensive patients in Ethiopia have uncontrolled hypertension (Yazie D et al ., 2018). There are limited studies that have been performed on uncontrolled hypertension in the study area. The goal of this study was therefore to assess the prevalence of uncontrolled hypertension and its associated factors among hypertensive patients undergoing follow-up in Bale Zone Hospitals, South East Ethiopia.

## Operational definitions

Hypertension:- is a sustained high blood pressure (systolic blood pressure of $\geq 140 \mathrm{~mm} \mathrm{Hg}$ and/or diastolic blood pressure of $\geq 90$ mm Hg ) (Van de Vijver S et al., 2013).
Uncontrolled Hypertension:- is defined as sustained high blood pressure(Systolic blood pressure of $\geq 140 \mathrm{~mm} \mathrm{Hg}$ and/or diastolic blood pressure of $\geq 90 \mathrm{~mm} \mathrm{Hg}$ ) for individuals below the age of 60 years and Systolic blood pressure of $\geq 150 \mathrm{~mm} \mathrm{Hg}$ and/or Diastolic blood pressure of $\geq 90 \mathrm{~mm} \mathrm{Hg}$ with regular use of antihypertensive medication(s) for individuals age of 60 years and above (Paul A. James et al., 2014).

Controlled Hypertension:- is defined as Systolic Blood Pressure $<140 \mathrm{~mm} \mathrm{Hg}$ and Diastolic Blood Pressure $<90 \mathrm{~mm} \mathrm{Hg}$ for individuals below the age of 60; Systolic Blood Pressure < 150 mm Hg and Diastolic Blood Pressure $<90 \mathrm{mmHg}$ as a result of pharmacologic treatment among the hypertensive for individuals age of 60 years and above (Paul A. James et al., 2014).
Body Mass Index: - was calculated as weight in kilograms divided by height in square meters and in general population it is classified in five categories:
$\checkmark$ underweight ( $\mathrm{BMI}<18.5 \mathrm{~kg} / \mathrm{m}^{2}$ ),
$\checkmark$ normal weight (BMI 18.5-24.9 kg/m²),
$\checkmark$ class I obesity - overweight (BMI 25.0-29.9 $\mathrm{kg} / \mathrm{m}^{2}$ ),
$\checkmark$ class II obesity - obesity (BMI 30.0-39.9 kg/m²),
$\checkmark$ class III obesity - extreme obesity (BMI $>40 \mathrm{~kg} / \mathrm{m}^{2}$ ) (Antonino De Lorenzo et al., 2016).
Hypertensive patient on follow up: - hypertensive patient on
hypertension medication for at least for 1 month.
Physically active: an individual who perform physical exercise for at least 30 minutes per day for at least 5 day per week(WHO, 2014).

Physically inactive: an individual who perform physical exercise for less than 30 minutes per day for less than 5 day per week(WHO, 2014).

## METHODS AND MATERIALS

## Study area and period

Study was conducted in five public hospitals of Bale zone namely Madda Walabu University Goba Referral, Robe General, Ginnir General, Delomena General and Madda Walabu District Hospitals. Bale Zone is found in Oromia region, 430KM far from the capital city of Ethiopia Addis Ababa. The Zone has an EightyNine health Center and five public hospitals serving 1,955,198 communities. Many of these hospitals offered care to hypertensive patients in their follow-up clinic (Bale Zone Health Office, 2020). The study was conducted from March 2020 to April 2020.

## Study Design and Population

A facility-based cross - sectional study design was conducted. The source population was all hypertension patients in the Bale zone hospitals. The study population was all randomly chosen adult hypertensive patients who attended follow-up in Bale Zone Hospitals in the study area. All adult hypertensive patients (> 18 years of age) on follow-up in the Bale zone hospitals and on antihypertensive drug therapy for at least 1 month were included. Patients who were extremely ill and unable to respond to the interview were excluded.

## Sample size determination

Single population proportion formula was used to determine the sample size using proportion of $52.7 \%$ from previous study done 2017 in Jima University teaching and specialized hospital on uncontrolled hypertension and associated factors among adult hypertensive patients on follow-up (Bekele Tesfaye et al., 2017) at $95 \%$ confidence interval and $5 \%$ margin of error and adding $10 \%$ non-response rate the total sample size was 421 hypertensive patients on follow-up.

## Sampling procedure

According to a study from five public hospitals in the Bale region, the hypertensive patient on follow-up in February 2020 was 902. Among these are Madda Walabu University Goba Referral Hospital 197 patients, Robe General Hospital 303 patients, Ginnir General Hospital 182 patients, Delomena General 131 patients and Madda Walabu District 89 hypertensive patients (Report of Five Bale Region Hospitals, 2020). Systematic random sampling was used to pick 421 participants. The first samples of the study were distributed proportionally to the hospitals on the basis of the patient flow data of the 1-month report.
Then, 421 study participants were picked 92 were from Madda Walabu University Goba Referral Hospital, 141 from Robe General Hospital, 85 from Ginnir General Hospital, 61 from Delomena General and 42 follow-up hypertensive patients from

Madda Walabu District Hospital. The subjects of the analysis were chosen using a systematic random sampling method using the $\mathrm{K}=2$ interval. Data were obtained by passing on each other to follow-up patients by considering the order in which they should be taken care of as a sampling frame after the first participant was selected by simple random sampling.

## Study Variable

The Dependent variable for the study was uncontrolled Hypertension. And the independent variable were sociodemographic factors (age, sex, marital status, residence, religion, ethnicity, level of education, occupation and monthly income), personal factors (life style/ alcohol use, type and duration of Exercise, chewing chat, diet (fat use ,fruit and vegetables use and salt use) and BMI/ weight control/), disease and medication factors (comorbidities, duration of hypertension diagnosis, family history of hypertension, nature / type of ant hypertensive medication and duration of anti - hypertensive medication intake) and social factors (support from families and non-family members of the society).

## Data collection tools

Data were collected from five qualified BSc Nurse patients on a face-to - face follow-up with a pre-tested semi-structured questionnaire (Bekele Tesfaye et al., 2017). The questionnaire was prepared in English and translated into Afan Oromo and Amharic and then translated back into English by language experts to verify its accuracy. The questionnaires contain:-sociodemographic, personal and social variables obtained by face-to face interview and the medical record analysis was carried out using the data extraction method to be done for each research participant in order to obtain the comorbidities and the type / name of antihypertensive drugs. Blood Pressure was calculated using the standard Mercury Sphygmomanometer and stethoscope by trained data collectors, weight was measured using weighing scale by data collectors with patients standing without shoes and wearing light clothing and registered to the nearest 100 g . Height was also determined by the data collectors using the height scale, while the patients standing without shoes reported at the nearest 0.5 cm and finally the Body-Mass Index (BMI) were calculated.

## Data collection Procedures

Before the actual data collection preparation was given for one day by the main investigator. Training sessions was on the objective of the study, the purpose of each question and interviewing methods, and the role of the data collector in the training. Pretest was performed on 5\% of the overall sample size in the Dodola General Hospital. Then five BSC Nurse performed face-to - face interviews for socio-demographic, personal and social reasons. Comorbidities and antihypertensive drugs were obtained from medical records and blood pressure was measured twice using the regular Mercury Sphygmomanometer and stethoscope after rest for 30 minutes and an average of two measurements were used to monitor or manage hypertension. Height and weight were determined when the BMI was calculated.

Data quality control
confidential. However, patients with uncontrolled hypertension were told to physicians and nurses working in a follow-up clinic, and the appropriate care was given on a case-by - case basis.

## Results

Socio-Demographic Characteristics
Overall, 421 participants were included in this study with a response rate of 412 ( $97.8 \%$ ). Of the 412 participants in the sample, 228 ( $55.3 \%$ ) were male. The average age of respondents was $53.8 \pm 11.9$ SD years and almost half (49.5\%) were between 45-59 years of age, the majority were 383 (93\%) were married and 257 ( $62.4 \%$ ) were urban. More than half ( $52.9 \%$ ) of participants were Muslims and 145 (35.2\%) did not learn formal education as shown in (Table 1).

## Prevalence of Uncontrolled Hypertension

The mean systolic blood pressure was $140.57 \pm 16.75 \mathrm{mmHg}$ SD and the mean diastolic blood pressure was $88.61 \pm 13.04 \mathrm{~mm} \mathrm{Hg}$ SD. Overall, 235(57.04\%) ( $95 \%$ CI, $52.3-61.8 \%$ ) of the study participants had uncontrolled hypertension and the remaining 177(42.96\%) had controlled hypertension (Figure 1).

## Medication related factors

One hundred and thirty two (32\%) of participants had begun hypertension medicine in the last two years. The mean period of time after the drug used for hypertension was $4.2848 \pm 3.9$ SD years and ranged from 1 month to 20 years. Approximately onefourth of the participants ( $24 \%$ ) had side effects on drugs; of this headache, 54 ( $54.5 \%$ ) had side effects. The majority of participants measured their blood pressure on a monthly basis 364 ( $84 \%$ ) and $280(68 \%)$ of patients had two medications as shown in (Table 2).

## Personal or Life Style Related Factors

Among participants, 149 (36.2\%) added salt to their diet and 282 (68.4\%) did not eat fatty food and 184 (44.7\%) of participants ate fruit and vegetables $1-3$ days a week and 252 (61.2\%) hypertensive patients were physically inactive. The majority of participants 374 ( $90.8 \%$ ) were not consuming alcohol and 404 $(98.1 \%)$ were not smoking cigarettes, 246 (59.7\%) were in the usual BMI range (Table 3)

## Disease related factors and support for care

Of all the participants in the study, $81(19.7 \%)$ patients had comorbid conditions compared to 42 ( $51.85 \%$ ) patients with Diabetes mellitus. One hundred and thirty two (32\%) of participants were diagnosed with hypertension in the last two years. The duration of hypertension diagnosis ranged from 1 month to 20 years. Three hundred five ( $74 \%$ ) had family or other care assistance as seen in )Table 4).

## Factors associated with uncontrolled hypertension

The association of independent variables with the uncontrolled hypertension was investigated using both binary and multivariate logistic regression. In bivariate logistic regression analysis; eleven variables were $p$ value 0.2 . Age $60-74$ years $(C O R=3.941$,
$95 \% \mathrm{CI}: 1.205-12.896, \mathrm{P}=0.023$ ) when compared to age $75-89$ years, patients those have family history of hypertension (COR=1.512, $95 \% \mathrm{CI}: 1.020-2.242, \mathrm{P}=0.04$ ) as compared to those did not have, experience of medications side effect $(\mathrm{COR}=0.521$, $95 \%$ CI: 0.323-.842, $\mathrm{p}=0.008$ ), blood pressure measurement weekly (COR=0.064 (0.006-0.639, $\mathrm{p}=0.019$ ) as compared to those measure every two month, Medication use before one day of blood pressure measurement (COR=0.505, 95\% CI: 0.291-0.875, $\mathrm{p}=0.015)$, support for care $(\mathrm{COR}=2.53,95 \% \mathrm{CI}: 1.566-4.105$, $\mathrm{p}<0.001)$ as compared to counterpart.
The association of independent variables with uncontrolled hypertension was investigated by binary and multivariate logistic regression. In bivariate logistic regression analysis, eleven variables had a $p$ value of 0.2 . 60-74 years of age $(C O R=3.941$, $95 \%$ CI: 1.205-12.896, $\mathrm{P}=0.023$ ) compared to $75-89$ years of age, patients with family history of hypertension (COR=1.512, $95 \%$ CI: 1.020-2.242, $\mathrm{P}=0.04$ ) compared to those who did not have experience of side-effect medication (COR $=0.521,95 \% \mathrm{CI}$ : $0.323-.842, \mathrm{p}=0.008$ ), weekly blood pressure measurement (COR=0.064(0.006-0.639, $\mathrm{p}=0.019$ ) as a compared to those measure every two month, medication use before one day of blood pressure.
Salt use (COR=0.391, $95 \% \mathrm{CI}: 0.254-0.6$, $\mathrm{p}<0.001$ ), not consuming fatty food was negatively associated with uncontrolled hypertension (COR=3.920, 95\% CI: 2.375-6.469, p<0.001) compared to those consuming fat for 1-3 days / week, not consuming fruit and vegetables was less likely to increase uncontrolled hypertension ( $\mathrm{COR}=0.127,95 \% \mathrm{CI}: 0.030-0.548$, $\mathrm{p}=0.006$ ) and always consumed $(\mathrm{COR}=5)$. Physical inactivity (COR=0.302, $95 \%$ CI: $0.2-0.457, \mathrm{p}<0.001$ ) relative to regular physical activity. And also comorbidities (COR=0.490, $95 \% \mathrm{CI}$ : $0.29-0.827, p=0.008$ ) were showed association with uncontrolled hypertension and all this variables were fitted in multivariate logistics regression as shown in (Table 5).

Multivariate logistics regression analysis for uncontrolled
hypertension
Multivariate logistic regression analysis showed that patients with drug side effects encountered twice (AOR $=1.975,95 \% \mathrm{CI}: 1.056-$ $3.695, \mathrm{P}=0.033$ ) were more likely to have uncontrolled hypertension than those with no drug side effects. The two-fold risk of uncontrolled hypertension (AOR=1.988, 95\% CI, 1.026$3.85, \mathrm{P}=0.042$ ) in hypertensive patients with comorbidity compared to patients without comorbidity. Hypertensive patients with relatives or other care support $52 \%$ (AOR $=0.485,95 \% \mathrm{CI}$ : $0.266-0.886, \mathrm{p}=0.019$ ) less likely to have uncontrolled hypertension compared to their counterparts.
Potential for uncontrolled hypertension was two times higher ( $\mathrm{AOR}=1.914,95 \% \mathrm{CI}: 1.106-3.313, \mathrm{P}=0.02$ ) in hypertensive patients who added salt to their food compared to those who did not use salt. Hypertensive patients who did not consume fruit and vegetables were six times more likely to have uncontrolled hypertension (AOR=6,106, $95 \% \mathrm{CI}: 1,261-29,569, \mathrm{p}=0,025$ ) than those who ate fruit and vegetables for 1-3 days per week. Similarly, patients who used fruit and vegetables all weekdays were $68 \%$ ( $\mathrm{AOR}=0.323,95 \% \mathrm{CI}: 0.186-0.561, \mathrm{P}=0.001$ ) less likely to experience uncontrolled hypertension compared to patients who used fruit and vegetables for 1-3 days / week. Hypertensive patients who did not consume fat $75 \%$ (AOR $=0.249,95 \%$ CI: $0.135-0.459, \mathrm{P}<0.001$ ) were less likely to
experience uncontrolled hypertension relative to those who used fat for 1-3 days / week. Patients who were physically inactive twice (AOR=1.972, $95 \% \mathrm{CI}: 1.185-3.282, \mathrm{p}=0.009$ ) were more likely to have uncontrolled hypertension relative to those who conducted regular physical activity as shown in (Table 6).

## Discussion

This study showed that $57 \%$ ( $95 \%$ CI: $51.3-61.8 \%$ ) of adult hypertensive patients had uncontrolled hypertension. This finding is almost consistent with studies in Tikur Anbessa General Specialized Hospital, which was $59.9 \%$ of hypertensive patients following uncontrolled hypertension (Adamu Tesfaye et al., 2015), $56.4 \%$ in Adama (Gete Chemeda Lichisa et al., 2014), $57.4 \%$ of hypertensive patients with uncontrolled hypertension (Sarfo FS et al . , 2018) and $53.6 \%$ in Ghana.
This result is lower than study done in Zewditu memorial hospital $69.9 \%$ (Yazie D et al., 2018), hospital based studies conducted in Zimbabwe 67.2 \% (Tafadzwa Priscilla Goverwa et al., 2014) and Kenya $66.6 \%$ (Mutua E. et al., 2014). This difference could be because of discrepancies lifestyle behaviors such as feeding habits and sedentary lifestyles that increase uncontrolled hypertension and the other justification is the study done in Zewditu memorial hospital, Zimbabwe and Kenya. Classification of uncontrolled blood pressure $\geq 140 / 90$ and blood pressure $\geq 130 / 80$ for general hypertensive patients and for comorbid cases of chronic kidney disease and diabetes mellitus, as recommended by the Joint National Committee 7 for the Control of Blood Pressure. However, this study was conducted using Joined National Committee 8 for the management of uncontrolled hypertension of systolic blood pressure $\geq 140 \mathrm{mmHg}$ and/or diastolic blood pressure $\geq 90 \mathrm{mmHg}$ for individuals below 60 years of age and systolic blood pressure $\geq 150 \mathrm{mmHg}$ and diastolic blood pressure $\geq 90 \mathrm{mmHg}$ with daily use of anti-hypertensive medication(s) for individuals below 60 years of age and above (Paul A. James et al.,2014). The results of this study are higher than those of the University of Gondar Reference Hospital, Ethiopia 49.6\% (Animut Y et al., 2018), Southwest Ethiopia 49.7\% (Asgedom SW et al . , 2016) and Malaysia $50.7 \%$ of the follow-up hypertensive patients (Cheong A et al., 2015). This discrepancy is due to the difference in population.
In this study, experience with drug side effects substantially associated with uncontrolled hypertension; experience with drug side effects was two times more likely to have uncontrolled hypertension than experience with non-medication side effects. This result is consistent with the Chicago study (Yacob G. Tedla and Bautista, 2015). This is due to the fact that hypertensive patients who experience side-effect medications decrease care and also lower adherence to drugs (Kronish IM et al . , 2011). Hypertensive patients with family or other care support were $52 \%$ less likely to experience uncontrolled hypertension compared to their counterparts. This result is consistent with studies conducted in Nigeria (Oluwaseun S. Ojo1 et al., 2017) and the USA (Flynn SJ et al., 2013). This could be due to decreased family support or other personal support that may lead to unhealthy habits impacting a healthier lifestyle. A healthy social network can also reduce blood pressure by reducing stress (Flynn SJ et al., 2013).
In this study, patients with comorbidities are twice as likely to have uncontrolled hypertension. This finding is similar to a study in Thailand (Boonsub Sakboonyarat et al., 2019). This indicates
that it is difficult to control blood pressure in patients with comorbidities. Patients who have applied salt to their diet are two times more likely to have uncontrolled hypertension than those who have not used salt. The results are consistent with the findings of studies conducted at the Jimma University Specialized Hospital (Solomon Woldegebriel Asgedom et al . , 2016) and in China (Li Yang et al . , 2014). This is due to the effect of salt on the body's sodium balance, which induces fluid retention that improves preservation. This is due to the effect of salt on the body's sodium balance, which causes fluid retention that increases blood pressure on the walls of the blood vessels (Whelton PK et al . , 2018).
Patients that did not consume fat $75 \%$ less often decreased the risk of uncontrolled hypertension compared to those who consumed fat for 1-3 days per week. This is similar to the study in Ghana (Sarfo FS et al ., 2018). This could be due to the fact that excess accumulation of fat in the blood vessels leads to atherosclerosis and also saturated fat obtained commonly found from animals, is the risk of cardiovascular disorders (Sabour H et al ., 2016).
This study found that patients who did not have any physical activity were twice as likely to have uncontrolled hypertension compared to patients who did regular physical activity. This finding is supported by studies conducted at the Jimma University Specialized Hospital (Solomon Woldegebriel Asgedom et al . , 2016), studies conducted at the Tikur Anbess General Specialized Hospital (Adamu Tesfaye et al ., 2015) and studies conducted in China (Li Yang et al., 2014). This may be due to regular physical activity that makes the heart stronger and can pump more blood with less effort. If the heart works less to pump, the strength of the arteries decreases, lowering blood pressure. Exercise also has an effect on the reduction of systemic vascular resistance, plasma norepinephrine and renin activity (Diaz KM and D., 2013)
Patients who did not eat fruit and vegetables were six times more likely to have uncontrolled hypertension than those who ate fruit and vegetables for 1-3 days per week. Similarly, patients who ate vegetables for all days of the week were $68 \%$ less likely to have uncontrolled hypertension compared to those who consumed fruit and vegetables for 1-3 days a week. This finding is consistent with studies in Spain (Pienovi L et al., 2015) and China (Li G et al., 2015). Fruit and vegetables are low in cholesterol and saturated fat and high in dietary fiber, potassium , calcium and magnesium, which lowers blood pressure (Whelton PK).

## Conclussion

The prevalence of uncontrolled hypertension was high and more than half of the adult hypertensive follow-up patients had uncontrolled hypertension in five public hospitals in the Bale zone. Experience with side-effect treatment, salt use, not eating fruit and vegetables, physical inactivity and comorbidity were factors positively associated with uncontrolled hypertension while family or other caregivers and non-consumers of fat were negatively associated with uncontrolled hypertension. Education on substance usage, lifestyle modification and ongoing follow-up is therefore crucial to control hypertension in patients with uncontrolled hypertension.

## Limitation of the study

The research was performed in hypertensive patients who attended follow-up at Hospitals and did not recognize
hypertensive patients who did not follow-up. This limits the generalizability of the results to the whole population. Since this research was a cross-sectional study design, the essence of the analysis could be difficult to establish the causal relationship between the study variables. The results of this study were based on self-reported knowledge that did not reflect their actual experience in hypertension management.


Figure 1: Hypertension status of adult hypertensive patients on follow up in Bale Zone Hospitals, Southeast Ethiopia, 2020 ( $\mathrm{n}=412$ )

| Variables | Category | Frequency | Percent |
| :---: | :---: | :---: | :---: |
| Age | <30 years 30-44 years 45-59 years 60-74 years 75-89 years | $\begin{aligned} & \hline 6 \\ & 81 \\ & 204 \\ & 104 \\ & 17 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1.5 \\ & 19.7 \\ & 49.5 \\ & 25.2 \\ & 4.1 \\ & \hline \end{aligned}$ |
| Sex | Male <br> Female | $\begin{aligned} & \hline 228 \\ & 184 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 55.3 \\ & 44.7 \\ & \hline \end{aligned}$ |
| Marital status | Single <br> Married <br> Separate/divorced Widowed | $\begin{aligned} & 6 \\ & 383 \\ & 5 \\ & 18 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1.4 \\ & 93.0 \\ & 1.2 \\ & 4.4 \\ & \hline \end{aligned}$ |
| Place of Residence | Urban <br> Rural | $\begin{aligned} & \hline 257 \\ & 155 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 62.4 \\ & 37.6 \\ & \hline \end{aligned}$ |
| Religion | Muslim <br> Orthodox <br> Protestant <br> Wakefata | $\begin{aligned} & 218 \\ & 169 \\ & 19 \\ & 6 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 52.9 \\ & 41.0 \\ & 4.6 \\ & 1.5 \\ & \hline \end{aligned}$ |
| Ethnicity | Oromo <br> Amhara <br> Tigre <br> Gurage | $\begin{aligned} & 284 \\ & 102 \\ & 18 \\ & 8 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 68.9 \\ & 24.8 \\ & 4.4 \\ & 1.9 \\ & \hline \end{aligned}$ |
| Educational status | Unable to read and Write <br> Read and Write <br> Primary School <br> Secondary School <br> Diploma/Level IV <br> Frist degree and above | $\begin{aligned} & 145 \\ & 58 \\ & 87 \\ & 58 \\ & 50 \\ & 14 \end{aligned}$ | $\begin{aligned} & 35.2 \\ & 14.1 \\ & 21.1 \\ & 14.1 \\ & 12.1 \\ & 3.4 \end{aligned}$ |
| Occupation | House Wife <br> Farmer Government employee | $\begin{aligned} & 124 \\ & 98 \\ & 48 \end{aligned}$ | $\begin{aligned} & \hline 30.1 \\ & 23.8 \\ & 11.7 \end{aligned}$ |
|  | Merchant <br> Self employed <br> Non employed <br> Others | $\begin{aligned} & 74 \\ & 53 \\ & 3 \\ & 12 \\ & \hline \end{aligned}$ | $\begin{aligned} & 18.0 \\ & 12.9 \\ & 0.7 \\ & 2.9 \\ & \hline \end{aligned}$ |
| Monthly income | $\begin{aligned} & \hline 1500-3500 \\ & 3501-5500 \\ & 5501-10000 \\ & 10000-20000 \\ & >=20000 \end{aligned}$ | $\begin{aligned} & \hline 81 \\ & 99 \\ & 141 \\ & 64 \\ & 27 \\ & \hline \end{aligned}$ | $\begin{aligned} & 19.7 \\ & 24.0 \\ & 34.2 \\ & 15.5 \\ & 6.6 \\ & \hline \end{aligned}$ |

Table 1: Socio demographic characteristics of adult hypertensive patients on follow up in Bale Zone Hospitals, Southeast Ethiopia, 2020 ( $\mathrm{n}=412$ )

| Variables | Category | Freque ncy | Perc ent |
| :---: | :---: | :---: | :---: |
| Duration of management | <2 years <br> 2-5 years <br> 5-10 years <br> $>10$ years | $\begin{aligned} & 132 \\ & 120 \\ & 115 \\ & 45 \end{aligned}$ | $\begin{aligned} & 32.0 \\ & 29.1 \\ & 28.0 \\ & 10.9 \end{aligned}$ |
| Experienced medication effects | $\begin{array}{\|l} \text { Yes } \\ \text { No } \end{array}$ | $\begin{aligned} & 99 \\ & 313 \end{aligned}$ | $\begin{aligned} & 24.0 \\ & 76.0 \end{aligned}$ |
| Types medication of side effect ( $\mathrm{n}=99$ ) | Erectile dysfunction <br> Headache <br> Weakness <br> Dry mouth | $\begin{aligned} & 13 \\ & 54 \\ & 31 \\ & 1 \end{aligned}$ | $\begin{aligned} & 13.1 \\ & 3 \\ & 54.5 \\ & 4 \\ & 31.3 \\ & 1 \\ & 1.01 \end{aligned}$ |
| Is there any days when you did not take your medicine? | $\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$ | $\begin{aligned} & 98 \\ & 314 \end{aligned}$ | $\begin{aligned} & 23.8 \\ & 76.2 \end{aligned}$ |
| Reason for not using anti hypertension medicine $(\mathrm{n}=98)$ | I forgot <br> Due to fear of side effect <br> Symptoms of high blood pressure controlled <br> I take traditional drug | $\begin{aligned} & 85 \\ & 6 \\ & 6 \\ & 5 \\ & 2 \end{aligned}$ | $\begin{aligned} & \hline 86.7 \\ & 3 \\ & 6.12 \\ & 5.11 \\ & 2.04 \\ & \hline \end{aligned}$ |
| Medication use one day before Blood pressure measured | $\begin{array}{\|l} \text { Yes } \\ \text { No } \end{array}$ | $\begin{aligned} & 351 \\ & 61 \end{aligned}$ | $\begin{aligned} & 85.2 \\ & 14.8 \end{aligned}$ |
| Frequency of Blood pressure measured | Weekly <br> Every two week <br> Monthly <br> Every two month | $\begin{aligned} & \hline 49 \\ & 12 \\ & 346 \\ & 5 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 11.9 \\ & 2.9 \\ & 84.0 \\ & 1.2 \\ & \hline \end{aligned}$ |
| Current Antihypertensive patients use | Mono therapy <br> Two drug therapy <br> Three drug therapy | $\begin{aligned} & 122 \\ & 280 \\ & 10 \end{aligned}$ | $\begin{aligned} & 29.6 \\ & 68.0 \\ & 2.4 \end{aligned}$ |
| Name of drugs patient use | Hydrochlorothiazide Nevidipine <br> Hydrochlorothiazide ACHI <br> Hydrochlorothiazide <br> Beta blocker <br> Hydrochlorothiazide <br> Amlodipine <br> Hydrochlorothiazide <br> ACHI + Amlodipine + <br> Hydrochlorothiazide | $\begin{aligned} & 122 \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & \hline \\ & \hline \end{aligned}$ | 29.6 6.6 37.1 1.0 23.3 2.4 |

Table 2: Medication factors of adult hypertensive patients on follow up in Bale Zone Hospitals, Southeast Ethiopia, 2020 ( $\mathrm{n}=412$ )

| Variable category |  | $\begin{aligned} & \text { Frequ } \\ & \text { ency } \end{aligned}$ | Perce nt |
| :---: | :---: | :---: | :---: |
| Drinking alcohol | $\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$ | $\begin{aligned} & 38 \\ & 374 \end{aligned}$ | $\begin{aligned} & 9.2 \\ & 90.8 \end{aligned}$ |
| Use of salt in food | $\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$ | $\begin{aligned} & 149 \\ & 263 \end{aligned}$ | $\begin{aligned} & 36.2 \\ & 63.8 \end{aligned}$ |
| Consuming fruit or vegetables | not eat fruit and vegetables <br> always <br> 4-6 days/week <br> 1-3 days/week | $\begin{array}{\|l} \hline 37 \\ 144 \\ 47 \\ 184 \\ \hline \end{array}$ | $\begin{aligned} & \hline 9.0 \\ & 35.0 \\ & 11.4 \\ & 44.7 \\ & \hline \end{aligned}$ |
| Consuming fat | not eat fat always 4-6 days/week 1-3 days/week | $\begin{array}{\|l} 282 \\ 3 \\ 12 \\ 115 \\ \hline \end{array}$ | $\begin{aligned} & \hline 68.4 \\ & 0.7 \\ & 2.9 \\ & 27.9 \\ & \hline \end{aligned}$ |
| Smoking cigarettes | $\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$ | $\begin{aligned} & 8 \\ & 404 \end{aligned}$ | $\begin{aligned} & 1.9 \\ & 98.1 \end{aligned}$ |
| Chewing chat | $\begin{aligned} & \mathrm{Yes} \\ & \mathrm{No} \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 46 \\ & 366 \\ & \hline \end{aligned}$ | $\begin{aligned} & 11.2 \\ & 88.8 \\ & \hline \end{aligned}$ |
| Regular physical activity | $\begin{array}{\|l} \text { Yes } \\ \text { No } \end{array}$ | $\begin{aligned} & 307 \\ & 105 \end{aligned}$ | $\begin{aligned} & 74.51 \\ & 25.49 \end{aligned}$ |
| Duration of regular physical exercise per day(n=307) | walking for less than 30 minutes <br> walking for more than 30 minutes <br> Any types of walking without classification <br> Go to work place on foot | $\begin{aligned} & 147 \\ & 95 \\ & 63 \\ & 2 \end{aligned}$ | $\begin{aligned} & 47.88 \\ & 30.94 \\ & 20.52 \\ & 0.65 \end{aligned}$ |
| Physical activity | Physically inactive Physically active | $\begin{aligned} & 252 \\ & 160 \end{aligned}$ | $\begin{aligned} & 61.2 \\ & 38.8 \end{aligned}$ |
| BMI | Underweight ( $<18.5 \mathrm{~kg} / \mathrm{m}^{2}$ ) | 1 | 0.2 |
| BMI | Normal (18.5-24.9 kg/m²) | 246 | 59.7 |
|  | Over weight ( $25-29.9 \mathrm{~kg} / \mathrm{m}^{2}$ ) | 156 | 37.9 |

Table 3: Personal or Life style related factors of adult hypertensive patients on follow up in Bale Zone Hospitals, Southeast Ethiopia, 2020 ( $\mathrm{n}=412$ )

| Variable category |  | $\begin{aligned} & \text { Freque } \\ & \text { ncy } \end{aligned}$ | $\begin{aligned} & \text { Percen } \\ & t \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| Comorbidities |  | 81 | 19.7 |
|  | $\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$ | 331 | 80.3 |
| Types of comorbidities ( $\mathrm{n}=81$ ) | Chronic Kidney | 18 | 22.22 |
|  | diseases (CKD) | 42 | 51.85 |
|  | Diabetes mellitus | 13 | 16.04 |
|  | (DM) | 2 | 2.4 |
|  | Heart failure | 6 | 7.4 |
|  | Gouty arthritis |  |  |
|  | Both CKD and DM |  |  |
| Duration of hypertension diagnosis | <2 years | 132 | 32.0 |
|  | 2-5 years | 120 | 29.1 |
|  | 5-10 years | 115 | 28.0 |
|  | >10 years | 45 | 10.9 |


| Family history of |  |  |  |
| :--- | :--- | :--- | :--- |
| hypertension | Yes | 218 | 52.9 |
| No | 194 | 47.1 |  |
| Family/other person | Yes | 305 | 74 |
| support for care | No | 107 | 26 |

Table 4: Disease related factors and support for care of adult hypertensive patients on follow up in Bale Zone Hospitals, Southeast Ethiopia, $2020(\mathrm{n}=412)$

| Variables | Category | Hypertension status |  | $\begin{aligned} & \text { COR }(95 \% \\ & \text { CI) } \end{aligned}$ | P <br> val <br> ue |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Unco <br> ntroll <br> ed <br> n(\%) | Contr olled n (\%) |  |  |
| Age | $l<30$ years $30-$ $44 y e a r s$ $45-59$ years $60-74$ years $75-89$ years | 2(33. <br> 3) <br> 46(56 <br> .8) <br> 127(6 <br> 2.3) <br> 47(45 <br> .2) <br> 13(76 <br> .5) | 4(66. <br> 7) <br> 35(43 <br> .2) <br> 77(37 <br> .7) <br> 57(54 <br> .8) <br> 4(23. <br> 5) | 6.5(0.85- $49.687)$ $2.473(0.74$ $2-8.241)$ $1.97(0.62-$ $6.26)$ $3.941(1.20$ $5-12.89)^{*}$ 1 | $\begin{aligned} & 0.0 \\ & 71 \\ & 0.1 \\ & 40 \\ & 0.2 \\ & 50 \\ & 0.0 \\ & 23 \end{aligned}$ |
| Family history of hypertensi on | Yes <br> No | $\begin{aligned} & 114(5 \\ & 2.3) \\ & 121(6 \\ & 2.4) \\ & \hline \end{aligned}$ | $\begin{aligned} & 104(4 \\ & 7.7) \\ & 73(37 \\ & .6) \\ & \hline \end{aligned}$ | $\begin{aligned} & 1.512(1.02 \\ & 0-2.242)^{*} \\ & 1 \end{aligned}$ | $\begin{aligned} & 0.0 \\ & 4 \end{aligned}$ |
| Experienc ed side effects of medicatio ns | Yes <br> No | $\begin{aligned} & 68(68 \\ & .7) \\ & 167(5 \\ & 3.4) \end{aligned}$ | $\begin{aligned} & 31(31 \\ & .3) \\ & 146(4 \\ & 6.6) \end{aligned}$ | $\begin{aligned} & 0.521 \\ & (.323- \\ & .842)^{*} \\ & 1 \end{aligned}$ | $\begin{aligned} & 0.0 \\ & 08 \end{aligned}$ |
| Medicatio n use before one days of blood pressure measured | Yes <br> No | $\begin{aligned} & \hline 209(5 \\ & 9.5) \\ & 26(42 \\ & .6) \end{aligned}$ | $\begin{aligned} & 142(4 \\ & 0.5) \\ & 35(57 \\ & .4) \end{aligned}$ | $\begin{aligned} & 0.505(0.29 \\ & 1-0.875)^{*} \\ & 1 \end{aligned}$ | $\begin{aligned} & 0.0 \\ & 15 \end{aligned}$ |
| Blood pressure measurem ent | Weekly every 2 week monthly every 2 month | $\begin{aligned} & \hline 39(79 \\ & .6) \\ & 7(58 . \\ & 3) \\ & 188(5 \\ & 4.3) \\ & 1(20) \\ & \hline \end{aligned}$ | $\begin{aligned} & 10(20 \\ & .4) \\ & 5(41 . \\ & 7) \\ & 158(4 \\ & 5.7) \\ & 4(80) \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.064(0.00 \\ & 6-0.639)^{*} \\ & 0.179(0.01 \\ & 5-2.119) \\ & 0.210(0.02 \\ & 3-1.899) \\ & 1 \end{aligned}$ | 0.0 19 0.1 72 0.1 65 |
| Use of salt in food | $\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$ | $\begin{aligned} & \text { 106(7 } \\ & \text { 1) } \\ & 129(4 \\ & 9) \\ & \hline \end{aligned}$ | $\begin{aligned} & 43(29 \\ & ) \\ & 134(5 \\ & 1) \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.391(.254- \\ & 0.6) \\ & 1 \end{aligned}$ | $\begin{aligned} & <0 . \\ & 00 \\ & 1 \end{aligned}$ |
| Consumin g fruit or vegetables | not <br> consumed <br> always <br> 4-6 <br> days/wee <br> k <br> 1-3 | 35(94 <br> .6) <br> 44(30 <br> .6) <br> 29(61 <br> .7) <br> 127(6 | 2(5.4 <br> 100(6 <br> 9.4) <br> 18(38 <br> .3) <br> 57(31 | 0.127(.030- $0.548)^{*}$ $5.064(3.15$ $7-8.123)^{*}$ $1.383(0.71$ $1-2.692)$ 1 | $\begin{aligned} & 0.0 \\ & 06 \\ & <0 . \\ & 00 \\ & 1 \\ & 0.3 \\ & 40 \\ & \hline \end{aligned}$ |


|  | days/wee <br> k | $9)$ |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Consumin | not | $135(4$ | $147(5$ | $3.92(2.375-$ | $<0$. |
| g Fat | consume | $7.9)$ | $2.1)$ | $6.469)^{*}$ | 00 |
|  | always | $3(100$ | 0 |  | 1 |
|  | $4-6$ | $)$ | $5(41$. | $2.571(0.75$ | $<0$. |
|  | days/wee | $7(58$. | $7)$ | $1-8.799)$ | 00 |
|  | k | $3)$ | $25(21$ | 1 | 1 |
|  | $1-3$ | $90(78$ | $.7)$ |  | 0.1 |
|  | days/wee | $.3)$ |  |  | 32 |
|  | k |  |  |  |  |
| physical | Inactive | $172(6$ | $80(31$ | $0.302(0.2-$ | $<0$. |
| activity | Active | $8.3)$ | $.7)$ | $0.457)^{*}$ | 00 |
|  |  | $63(39$ | $97(60$ | 1 | 1 |
|  |  | $.4)$ | $.6)$ |  |  |
| Having | Yes | $157(5$ | $148(4$ | $2.535(1.56$ | $<0$. |
| support | No | $1.5)$ | $8.5)$ | $6-4.105)^{*}$ | 00 |
| for care |  | $78(72$ | $29(27$ | 1 | 1 |
|  |  | $.9)$ | $.1)$ |  |  |
| Comorbid | Yes | $57(70$ | $24(29$ | $0.490(0.29-$ | 0.0 |
| ities | No | $.4)$ | $.6)$ | $0.827)^{*}$ | 08 |
|  |  | $178(5$ | $153(4$ | 1 |  |
|  |  | $3.8)$ | $6.2)$ |  |  |

Table 5: Bivariate logistic regression of adult hypertensive patients on follow up in Bale Zone Hospitals, Southeast Ethiopia, 2020 ( $\mathrm{n}=412$ )

| Variables | Category | Hypertension status |  | $\begin{aligned} & \hline \text { COR } \\ & (95 \% \mathrm{CI}) \end{aligned}$ | P value |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Uncontro lled n(\%) | Controll ed n(\%) |  |  |
| Age | $\quad<30$ years $30-$ 44 years $45-59$ years $60-74$ years $75-89$ years | $\begin{aligned} & \hline 2(33.3) \\ & 46(56.8) \\ & 127(62.3) \\ & 47(45.2) \\ & 13(76.5) \end{aligned}$ | $4(66.7)$ $35(43.2)$ $77(37.7)$ $57(54.8)$ $4(23.5)$ | $\begin{aligned} & \hline 6.5(0.85- \\ & 49.687) \\ & 2.473(0.74 \\ & 2-8.241) \\ & 1.97(0.62- \\ & 6.26) \\ & 3.941(1.20 \\ & 5-12.89)^{*} \\ & 1 \end{aligned}$ | $\begin{aligned} & \hline 0.071 \\ & 0.140 \\ & 0.250 \\ & 0.023 \end{aligned}$ |
| Family history of hypertensi on | Yes <br> No | $\begin{aligned} & 114(52.3) \\ & 121(62.4) \end{aligned}$ | $\begin{aligned} & 104(47 . \\ & 7) \\ & 73(37.6) \end{aligned}$ | $\begin{aligned} & 1.512(1.02 \\ & 0-2.242)^{*} \\ & 1 \end{aligned}$ | 0.04 |
| Experienc ed side effects of medicatio ns | $\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$ | $\begin{aligned} & \hline 68(68.7) \\ & 167(53.4) \end{aligned}$ | 31(31.3) 146(46. <br> 6) | $\begin{aligned} & \hline 0.521 \\ & (.323- \\ & .842)^{*} \\ & 1 \end{aligned}$ | 0.008 |
| Medicatio n use before one days of blood pressure measured | $\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$ | $\begin{aligned} & 209(59.5) \\ & 26(42.6) \end{aligned}$ | 142(40. <br> 5) 35(57.4) | $\begin{aligned} & 0.505(0.29 \\ & 1-0.875)^{*} \\ & 1 \end{aligned}$ | 0.015 |
| Blood pressure measurem ent | Weekly every 2 week monthly every 2 month | $\begin{aligned} & \hline 39(79.6) \\ & 7(58.3) \\ & 188(54.3) \\ & 1(20) \end{aligned}$ | $\begin{aligned} & \hline 10(20.4) \\ & 5(41.7) \\ & 158(45 . \\ & 7) \\ & 4(80) \end{aligned}$ | $\begin{aligned} & 0.064(0.00 \\ & 6-0.639)^{*} \\ & 0.179(0.01 \\ & 5-2.119) \\ & 0.210(0.02 \\ & 3-1.899) \\ & 1 \end{aligned}$ | $\begin{aligned} & 0.019 \\ & 0.172 \\ & 0.165 \end{aligned}$ |


| Use of salt in food | $\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$ | $\begin{aligned} & 106(71) \\ & 129(49) \end{aligned}$ | $\begin{aligned} & \hline 43(29) \\ & 134(51) \end{aligned}$ | $\begin{aligned} & \hline 0.391(.254 \\ & -0.6) \\ & 1 \end{aligned}$ | <0.001 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Consumin g fruit or vegetables | not <br> consume <br> d <br> always <br> 4-6 <br> days/wee <br> k <br> 1-3 <br> days/wee <br> k | $\begin{aligned} & 35(94.6) \\ & 44(30.6) \\ & 29(61.7) \\ & 127(69) \end{aligned}$ | $\begin{aligned} & \hline 2(5.4) \\ & 100(69 . \\ & 4) \\ & 18(38.3) \\ & 57(31) \end{aligned}$ | $\begin{aligned} & \hline 0.127(.030 \\ & -0.548)^{*} \\ & 5.064(3.15 \\ & 7-8.123)^{*} \\ & 1.383(0.71 \\ & 1-2.692) \\ & 1 \end{aligned}$ | $\begin{aligned} & \hline 0.006 \\ & <0.001 \\ & 0.340 \end{aligned}$ |
| Consumin g Fat | not <br> consume <br> always <br> 4-6 <br> days/wee <br> k <br> 1-3 <br> days/wee <br> k | $\begin{aligned} & 135(47.9) \\ & 3(100) \\ & 7(58.3) \\ & 90(78.3) \end{aligned}$ | $\begin{aligned} & 147(52 . \\ & 1) \\ & 0 \\ & 5(41.7) \\ & 25(21.7) \end{aligned}$ | $\begin{aligned} & 3.92(2.375 \\ & -6.469)^{*} \\ & 2.571(0.75 \\ & 1-8.799) \\ & 1 \end{aligned}$ | $\begin{aligned} & <0.001 \\ & <0.001 \\ & 0.132 \end{aligned}$ |
| physical activity | Inactive Active | $\begin{aligned} & \hline 172(68.3) \\ & 63(39.4) \end{aligned}$ | $\begin{aligned} & \hline 80(31.7) \\ & 97(60.6) \end{aligned}$ | $\begin{aligned} & 0.302(0.2- \\ & 0.457)^{*} \\ & 1 \end{aligned}$ | <0.001 |
| Having support for care | $\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$ | $\begin{aligned} & \hline 157(51.5) \\ & 78(72.9) \end{aligned}$ | $\begin{aligned} & 148(48 . \\ & 5) \\ & 29(27.1) \end{aligned}$ | $\begin{aligned} & 2.535(1.56 \\ & 6-4.105)^{*} \\ & 1 \end{aligned}$ | <0.001 |
| Comorbidi ties | $\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$ | $\begin{aligned} & \hline 57(70.4) \\ & 178(53.8) \end{aligned}$ | $\begin{aligned} & \text { 24(29.6) } \\ & 153(46 . \\ & 2) \end{aligned}$ | $\begin{aligned} & 0.490(0.29 \\ & -0.827)^{*} \\ & 1 \end{aligned}$ | 0.008 |

Table 6: Bivariate logistic regression of adult hypertensive patients on follow up in Bale Zone Hospitals, Southeast Ethiopia, 2020 ( $\mathrm{n}=412$ )

| Variabl <br> es | Catego ry | Hypertension status |  | $\begin{aligned} & \text { COR } \\ & (95 \% \\ & \text { CI) } \end{aligned}$ | $\text { AOR } \quad(95 \%$CI) | $\begin{aligned} & \hline \mathrm{P} \\ & \mathrm{va} \\ & \text { lu } \\ & \mathrm{e} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Uncontr olled n (\%) | Controll ed n(\%) |  |  |  |
| Age | <30 years $30-$ $44 y e a r s$ $45-59$ years $60-74$ years $75-89$ years | $\begin{aligned} & 2(33.3) \\ & 46(56.8) \\ & 127(62.3 \\ & \\ & 47(45.2) \\ & 13(76.5) \end{aligned}$ | $4(66.7)$ $35(43.2)$ $77(37.7)$ $57(54.8)$ $4(23.5)$ | $\begin{aligned} & \hline 6.5(0.8 \\ & 5- \\ & 49.687) \\ & 2.473(0 \\ & .742- \\ & 8.241) \\ & 1.97(0 . \\ & 62- \\ & 6.26) \\ & 3.941(1 \\ & .205- \\ & 12.89) \end{aligned}$ | $\begin{aligned} & \hline 0.219(0.016 \\ & -2.975) \\ & 0.649(0.15- \\ & 2.813) \\ & 0.756(0.185 \\ & -3.083) \\ & 0.384(0.091 \\ & -1.62) \\ & 1 \end{aligned}$ | $\begin{aligned} & \hline 0 . \\ & 25 \\ & 4 \\ & 0 . \\ & 56 \\ & 4 \\ & 0 . \\ & 69 \\ & 7 \\ & 0 . \\ & 19 \\ & 3 \end{aligned}$ |
| Family history of hyperte nsion | Yes <br> No | $\begin{aligned} & 114(52.3 \\ & ) \\ & 121(62.4 \\ & ) \end{aligned}$ |  | $\begin{aligned} & 1.512(1 \\ & .020- \\ & 2.242) \\ & 1 \end{aligned}$ | $\begin{aligned} & 0.771(0.466 \\ & -1.277) \end{aligned}$ | $\begin{aligned} & .3 \\ & 12 \end{aligned}$ |
| Experie <br> nced <br> side <br> effects <br> of <br> medica <br> tions | $\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$ | $\begin{aligned} & \hline 68(68.7) \\ & 167(53.4 \\ & ) \end{aligned}$ |  | $\begin{aligned} & 0.521 \\ & (.323- \\ & .842) \\ & 1 \end{aligned}$ | $\begin{aligned} & \text { 1.975(1.056 } \\ & -\mathbf{3 . 6 9 5}) \\ & 1 \end{aligned}$ | $\begin{aligned} & \mathbf{0 .} \\ & \mathbf{0 3} \\ & 3 \end{aligned}$ |
| Medica tion use before one days of | $\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$ | $\begin{aligned} & 209(59.5 \\ & \text { 26(42.6) } \end{aligned}$ | 142(40.5 )35(57.4 ) | $\begin{aligned} & 0.505(0 \\ & .291- \\ & 0.875) \\ & 1 \end{aligned}$ | $\begin{aligned} & \text { 2.083(1.048 } \\ & -4.141) \\ & 1 \end{aligned}$ | $\begin{aligned} & \mathbf{0 .} \\ & 03 \\ & 6 \end{aligned}$ |


| blood pressur e measur ed |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Blood pressur e measur ement | Weekly every 2 week monthl y every 2 month | $\begin{aligned} & \hline 39(79.6) \\ & 7(58.3) \\ & 188(54.3 \\ & ) \\ & 1(20) \end{aligned}$ | $\begin{aligned} & 10(20.4) \\ & 5(41.7) \\ & 158(45.7 \\ & 4(80) \end{aligned}$ | $\begin{aligned} & 0.064(0 \\ & .006- \\ & 0.639) \end{aligned}$ $1$ | 5.632(0.39- $81.298)$ $2.253(0.122$ $-41.288)$ $3.546(0.283$ $-44.431)$ 1 | $\begin{aligned} & \hline 0 . \\ & 20 \\ & 4 \\ & 0 . \\ & 58 \\ & 5 \\ & 0 . \\ & 32 \\ & 6 \\ & \hline \end{aligned}$ |
| $\begin{aligned} & \text { Use of } \\ & \text { salt in } \\ & \text { food } \end{aligned}$ | $\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$ | $\begin{aligned} & \hline 106(71) \\ & 129(49) \end{aligned}$ | $\begin{aligned} & 43(29) \\ & 134(51) \end{aligned}$ | $\begin{aligned} & \hline 0.391(. \\ & 254- \\ & 0.6) \\ & 1 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { 1.914(1.106 } \\ & -3.313) \\ & 1 \end{aligned}$ | $\begin{aligned} & \mathrm{0.} \\ & \mathbf{0 2} \\ & 0 \end{aligned}$ |
| $\begin{aligned} & \hline \text { Consu } \\ & \text { ming } \\ & \text { fruit or } \\ & \text { vegetab } \\ & \text { les } \end{aligned}$ | $\begin{aligned} & \hline \text { not } \\ & \text { consum } \\ & \text { ed } \\ & \text { always } \\ & 4-6 \\ & \text { days/w } \\ & \text { eek } \\ & 1-3 \\ & \text { days/w } \\ & \text { eek } \\ & \hline \end{aligned}$ | $\begin{aligned} & 35(94.6) \\ & 44(30.6) \\ & 29(61.7) \\ & 127(69) \end{aligned}$ | $\begin{aligned} & 2(5.4) \\ & 100(69.4 \\ & ) \\ & 18(38.3) \\ & 57(31) \end{aligned}$ | $\begin{aligned} & 0.127( \\ & 030- \\ & 0.548) \\ & 5.064(3 \\ & .157- \\ & 8.123) \\ & 1 \end{aligned}$ | $\begin{aligned} & \text { 6.106(1.261 } \\ & \mathbf{- 2 9 . 5 6 9 )} \\ & \mathbf{0 . 3 2 3 ( 0 . 1 8 6} \\ & \mathbf{- 0 . 5 6 1 )} \\ & 0.898(0.415 \\ & -1.943) \\ & 1 \end{aligned}$ | $\begin{aligned} & \mathbf{0 .} \\ & \mathbf{0 2} \\ & \mathbf{5} \\ & \mathbf{0 .} . \\ & \mathbf{0 0} \\ & \mathbf{1} \\ & 0 . \\ & 78 \\ & 6 \end{aligned}$ |
| Consu ming Fat | not consum <br> e always <br> 4-6 <br> days/w <br> eek <br> 1-3 <br> days/w <br> eek | $\begin{aligned} & 135(47.9 \\ & ) \\ & 3(100) \\ & 7(58.3) \\ & 90(78.3) \end{aligned}$ | $\begin{aligned} & 147(52.1 \\ & ) \\ & 0 \\ & 5(41.7) \\ & 25(21.7) \end{aligned}$ | $\begin{aligned} & 3.92(2 . \\ & 375- \\ & 6.469) \end{aligned}$ | $\begin{aligned} & \mathbf{0 . 2 4 9 ( 0 . 1 3 5} \\ & \mathbf{- 0 . 4 5 9 )} \\ & \\ & 0.794(0.175 \\ & -3.598) \\ & 1 \end{aligned}$ | $\begin{aligned} & <0 \\ & .0 \\ & 01 \\ & 0 . \\ & 76 \\ & 5 \end{aligned}$ |
| physica activity | $\begin{aligned} & \text { Inactiv } \\ & \text { e } \\ & \text { Active } \end{aligned}$ | $\begin{aligned} & 172(68.3 \\ & \text { ) } \\ & 63(39.4) \end{aligned}$ | $\begin{aligned} & \hline 80(31.7) \\ & 97(60.6) \end{aligned}$ | $\begin{aligned} & \hline 0.302(0 \\ & .2- \\ & 0.457) \\ & 1 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { 1.972(1.185 } \\ & -\mathbf{3 . 2 8 2 )} \\ & 1 \end{aligned}$ | $\begin{aligned} & \text { 0. } \\ & 00 \\ & 9 \end{aligned}$ |
| Suppor t for care | $\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$ | $\begin{aligned} & 157(51.5 \\ & { }^{78(72.9)} \end{aligned}$ | $\begin{aligned} & 148(48.5 \\ & ) \\ & 29(27.1) \end{aligned}$ | $\begin{array}{\|l\|} \hline 2.535(1 \\ .566- \\ 4.105) \\ 1 \\ \hline \end{array}$ | $\begin{aligned} & \mathbf{0 . 4 8 5 ( 0 . 2 6 6} \\ & \mathbf{- 0 . 8 8 6}) \\ & 1 \end{aligned}$ | $\begin{aligned} & \mathrm{0.} \\ & 01 \\ & 9 \end{aligned}$ |
| Comor bidities | $\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$ | $\begin{aligned} & \text { 57(70.4) } \\ & 178(53.8 \\ & ) \end{aligned}$ | $\begin{aligned} & \text { 24(29.6) } \\ & 153(46.2 \\ & ) \end{aligned}$ | $\begin{aligned} & \hline 0.490(0 \\ & .29- \\ & 0.827) \\ & 1 \end{aligned}$ | $\begin{aligned} & \text { 1.988(1.026 } \\ & -\mathbf{3 . 8 5}) \\ & 1 \end{aligned}$ | $\begin{aligned} & \hline 0 . \\ & 04 \\ & 2 \end{aligned}$ |

Table 7: Multivariate logistics regression of adult hypertensive patients on follow up in Bale Zone Hospitals, Southeast Ethiopia, 2020 ( $\mathrm{n}=412$ )
Acronyms/ Abbreviations

| AOR | Adjusted Odd Ratio |
| :--- | :--- |
| BMI | Body Mass Index |
| CI | Confidence Interval |
| CKD | Chronic Kidney Diseases |
| COR | Crude Odd Ratio |
| DM | Diabetes Mellitus |
| FMOH | Federal Ministry of Health |
| JNC | Joint National Committee |
| MWU | Madda Walabu University |
| NCDs | Non Communicable Diseases |
| SD | Standard Deviation |
| SPSS | Statistical Package for Social Sciences |
| SSA | Sub-Sahara Africa |
| WHO | World Health Organization |

## Ethical considerations

Ethical clearance was obtained from Madda Walabu University Goba Referral Ethical Hospital; Study Review Committee. Permission letter has been written from Madda Walabu University Goba Referral Hospital Academic Office to Madda Walabu University Goba Referral Hospital, Robe General Hospital, Ginnir General Hospital, Dello Mana General Hospital and Madda Walabu District Hospital. Of hospital was given prior to the start of the actual data collection and subsequent authorisation. Verbal informed consent was obtained from each study participant. The name and other personal identifiers of the participants were not included in the questionnaires and the right of the participants to withdraw from the study at any time during the data collection was preserved without violation of any benefit that the research participant obtained from the hospital. All information received from the study participant has been kept confidential. However, patients with uncontrolled hypertension were told to physicians and nurses working in a follow-up clinic, and the appropriate care was given on a case-by - case basis.

## Consent for publication

All the information used for this study was collected with the consent of participates of the study. And all the authors have read the manuscript and have consented to publish it this journal.

## Data availability

The data for this study is available with the authors and can be accessed based on the request from the concerned body.

## Funding

Funding agencies do not have role in the publication of the paper.

## Competing interest

The authors declare that they do not have conflict of interest.

## Authors' contribution

Anwar Tahir have conceived and designed the study, performed the data analysis and write up of the final result. Abulie Takele participated in designing the study, performed the statistical analysis, writing the results and discussion and prepared the manuscript. And Geroma Morka participated in designing the study, performed the statistical analysis and writing the results

## Acknowledgements

First of all, we would like to express our sincere gratitude to the study participants for their time and the information they provided. We would like to thank the data collectors, administrative bodies and health professionals of the five Bale Zone Public Hospitals for their help during data collection.

## Referrences

1. Abegaz tm, abdela oa, bhagavathula as \& fs., t. (2018).

Magnitude and determinants of uncontrolled blood pressure among hypertensive patients in ethiopia: hospital-based observational study. . Pharmacy practice, 16, 3.
adamu tesfaye, kabaye kumela \& wolde, m. (2015). Blood pressure control associates and antihypertensive pharmacotherapy patterns in tikur anbessa general specialized hospital chronic care department, addis ababa, ethiopia. American journal of biomedical and life sciences, 3, 41-48.
addisu bogale, teferi daba \& daka, d. W. (2019). Cost of hypertension illness and associated factors among patients attending hospitals in southwest shewa zone, oromia regional state,ethiopia. . Medrxiv, 3.
animut y, assefa at \& dg., 1. (2018). Blood pressure control status and associated factors among adult hypertensive patients on outpatient follow-up at university of gondar referral hospital, northwest ethiopia: a retrospective follow-up study. . Integr blood press control, 11.
5. antonino de lorenzo, laura soldati, francesca sarlo, menotti calvani, nicola di lorenzo \& renzo, 1. D. (2016). New obesity classification criteria as a tool for bariatric surgery indication. World j gastroenterol, 22, 681-703. asgedom sw, gudina ek, desse ta \& j., b. (2016). Assessment of blood pressure control among hypertensive patients in southwest ethiopia. . Plos one, 11.
7. Bale zone health office 2020. Health facility in bale zone 8. Bekele tesfaye, dessalegn haile, benalfew lake, tefera belachew, and, t. T. \& abera, h. (2017). Uncontrolled hypertension and associated factors among adult hypertensive patients on follow-up at jimma university teaching and specialized hospital: cross-sectional study. Research reports in clinical cardiology, 8, 23-28.
9. Boonsub sakboonyarat, ram rangsin, anupong kantiwong \& mungthin, m. (2019). Prevalence and associated factors of uncontrolled hypertension among hypertensive patients: a nation.wide survey in thailand. Bmc, 12, 6-8.
10. C. K. Chow, k. K. Teo \& rangarajan, s. (2013). "prevalence, awareness, treatment, and control of hypertension in rural and urban communities in high-, middle-, and low-income countries,". Journal of the americanmedical association 310, 959-968.
11. Cheong a, sazlina s-g, tong s, azah as \& s., s. (2015). Poor blood pressure control and its associated factors among older people with hypertension: a cross-sectional study in six public primary care clinics in malaysia. Acad family physicians malaysia. , 10, 19.
12. Diaz km \& d., s. (2013). Physical activity and the prevention of hypertension. . Curr hypertens rep. , 15, 659-668.
13. elsabet adane, asmamaw atnafu \& aschalew, a. Y. (2018). The cost of illness of hypertension and associated factors at the university of gondar comprehensive specialized hospital northwest ethiopia. Clinicoeconomics and outcomes research, 12, 137.
Fassil shiferaw 2019. Ethiopia sets to improve hypertension prevention and control at primary health care level. Who reginal office for africa.
15. Flynn sj, ameling jm, hill-briggs f, wolff jl, bone lr \& 27. levine $d m$ (2013). Facilitators and barriers to hypertension self management in urban african americans: perspectives of patients and family members. Patient prefer adherence. Bmc, 7, 9.
16. galson sw, staton ca, karia f, kilonzo $k$, lunyera $j \& u d$, p. (2017). Epidemiology of hypertension in northern tanzania: a community-based mixed-methods study. Bmj open, 7.
17. gebrewahd bezabh gebremichael, and, k. K. B. \& zemichael, t. M. (2018). Uncontrolled hypertension and associated factors among adult hypertensive patients in ayder comprehensive specialized hospital, tigray, ethiopia. Bmc cardiovascular disorders 19, 4-8.
18. Gete chemeda lichisa, gobezie temesgen tegegne, belayneh kefale gelaw, amsalu degu defersh, minyahil alebachew, woldu \& linjesa, j. L. (2014). Blood pressure control and its contributing factor among ambulatory hypertensive patients in adama hospital medical college, east shoa, adama, ethiopia. International journal of pharmaceutical and biological sciences research and devlopment, 2, 1-15.
19. kronish im, woodward m , sergie z , ogedegbe g , falzon 1 \& dm., m. (2011). Meta-analysis: impact of drug class on adherence to antihypertensives. Circulation. American journal of hypertension, 123, 1611-1621.
20. $\quad \mathrm{Li} \mathrm{g}$, cai ap \& mo yj (2015). Effects of guideline-based hypertension management in rural areas of guangdong province. Chin med j 128, 799-803.
21. Li yang, xiaoling xu, jing yan, w. Y., xinhua tang, haibin wu \& parkin, c. L. (2014). Analysis on associated factors of uncontrolled hypertension among elderly hypertensive patients in southern china: a community-based,cross-sectional survey. Bmc, 14, 2.
22. Misganaw a, haregu tn, deribe k , tessema ga, and, d. A. \& ya, m. (2017). National mortality burden due to communicable, non-communicable, and other diseases in ethiopia, 1990-2015: findings from the global burden of disease study 2015. . Popul health metr. London: biomed central, 15.
23. Mutua e., gitonga m., mbuthia, b., muiruri, n., cheptum, j. \& maingi, t. (2014). Level of blood pressure control among hypertensive patients on follow-up in a regional referral hospital in central kenya. . The pan african medical journal, 18.
24. Oladele vincent adeniyi, parimalaranie yogeswaran \& goon, d. T. (2016). Uncontrolled hypertension and its determinants in patients with concomitant type 2 diabetes mellitus ( t 2 dm ) in rural south africa. Plos one., 11, 1 .
25. Olomu, a., nazia, s., david, t., qinhua, h., shireesha, b., md, s. Q. \& margaret, h. (2016). Blood pressure control in hypertensive patients in federally qualified health centers. Impact of shared decision making in the officegap program. . Sage journal, article
26. Oluwaseun s. Ojo1, sunday o. Malomo1 \& sogunle1, p. T. (2017). Blood pressure (bp) control and perceived family support in patients with essential hypertension seen at a primary care clinic in western nigeria. Journal of family medicine and primary care, 5, 571-573.
35. Sophie w. Galson id, john w. Stanifer, julian t. Hertz, gloria temu, nathan thielman, temitope gafaar \& staton, c. A. (2019). The burden of hypertension in the emergency department and linkage to care. Plos one, 14, 6.

Suprawee meelab, itsara bunupuradah, jitrada suttiruang, salisa sakulrojanawong, nisanat thongkua, chattarin chantawiboonchai, prim chirabandhu, sasanpin lertthanaporn, krissada suwanthip, chindanai songsaengthum, boonyagorn keattisaksri, peeranut trakulsuk, apichat pittapun, naowanit nata, ram rangsin \& sakboonyaratid, b. (2019). Prevalence and associated factors of uncontrolled blood pressure among hypertensive patients in the rural communities in the central areas in thailand: a cross-sectional study. Plos one 14.
37. Tafadzwa priscilla goverwa, nyasha masuka, mufuta tshimanga, notion tafara gombe, lucia takundwa, and, d. B. \& wellington, m. (2014). Uncontrolled hypertension among hypertensive patients on treatment in lupane district, zimbabwe. Bmc research note, 7, 4-8.
38. Touria essayagh, meriem essayagh, abderrahmane el rhaffouli, mohammed khouchoua, germain bukassa kazadi, asmae khattabi \& essayagh, s. (2019). Prevalence of uncontrolled blood pressure in meknes, morocco, and its associated risk factors. Plos one $14,5$.
39. Van de vijver s, akinyi h, oti s, olajide a \& c, a. (2013).

Aboderin i status report on hypertension in africa ðconsultative review for the 6th session of the african union conference of ministers of health on ncd's. The pan african medical journal.
40. Whelton pk , carey rm \& aronow ws (2018). Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the american college of cardiology/american heart association task force on clinical practice guidelines. . American heart assosation, 71, 127-248.
41. Who 2014. Physical activity, global action plan for prevension and controle of non communicable disease 2013-2020 guide line. Who ,un, 1-2.
42. Who 2017a. Complication prevention for patients with hypertension a noncommunicable disease education manual for primary health care professionals and patients. Who report, 3.
43. Who 2017b. Ncd risk factor collaboration (ncd-risc). Worldwide trends in blood pressure from 1975 to 2015: . Who and the united states centers for disease control and prevention launched the global hearts initiative, 389, 37.
44. Who 2017c. Who. Global action plan for the prevention and control of noncommunicable diseases 2013-2020. Who.
45. Who (2019). World hypertension day who and the united states centers for disease control and prevention launched the global hearts initiative.
46. Yacob g. Tedla \& bautista, 1. E. (2015). Drug side effect symptoms and adherence to antihypertensive medication. American journal of hypertension 29, 771778.
47. yazie d, shibeshi $w$, alebachew $m$ \& a., b. (2018). Assessment of blood pressure control among hypertensive patients in zewditu memorial hospital, addis ababa, ethiopia: a cross-sectional study j bioanal biomed., 10, 80-87.
48. yoon, s. S., gu, q., nwankwo, t., wright, j. D., hong, y. \& burt, v. (2014). Trends inblood pressure among adults with hypertension. Hypertension, hypertension aha.

