

Nephrovigilance in Pharmacotherapy of Diabetic Retinopathy

Marianne L. Shahsuvaryan

Department of Ophthalmology, Yerevan State Medical University, Yerevan, Armenia.

Article Info

Received: January 08, 2026

Accepted: January 15, 2026

Published: January 26, 2026

***Corresponding author:** Marianne L. Shahsuvaryan, Department of Ophthalmology, Yerevan State Medical University, Yerevan, Armenia.

Citation: Marianne L. Shahsuvaryan., (2026). "Nephrovigilance in Pharmacotherapy of Diabetic Retinopathy" Ophthalmology and Vision Care, 6(1); DOI: 10.61148/2836-2853/OVC/067.

Copyright: © 2026 Marianne L. Shahsuvaryan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Objective Vascular Endothelial Growth Factor inhibitors (anti-VEGF), such as ranibizumab, aflibercept and bevacizumab delivered intraocularly, reinvigorate ocular pharmacotherapy in general, and diabetic retinopathy (DR) therapy in particular. At present long-term therapy with endless intravitreal injections of anti-VEGF in aging population, especially in persons with diabetes suffering from multimorbidity, causes safety concerns, highlighting a need for evaluating the evidence on nephrotoxicity, based on the currently available findings.

Method A literature search was conducted using PubMed, Web of Science, and Google Scholar databases for studies published up to December 2025. Studies were queried using the following keywords in various combinations: intravitreal pharmacotherapy by anti-VEGF in diabetic retinopathy, systemic adverse effects, nephrotoxicity, bevacizumab, ranibizumab, aflibercept.

Result and conclusion Nephrotoxicity in intraocular pharmacotherapy by anti-VEGF deserves a special attention in people with diabetes taking into account renal vulnerability. Clinical suspicion of renal systemic complications associated with intravitreal injections of anti-VEGF agents should be borne in mind. Early identification and prompt management of such patients can help achieve earlier resolution and positive outcomes.

Keywords: Angiogenesis Inhibitors / therapeutic use, Diabetes Mellitus, Diabetic Retinopathy / drug therapy

Key Points

1. Vascular Endothelial Growth Factor inhibitors (anti-VEGF), such as ranibizumab, aflibercept and bevacizumab delivered intraocularly, reinvigorate ocular pharmacotherapy in general, and diabetic retinopathy (DR) therapy in particular.
2. Currently DR as a most common visually disabling neurovascular complication of diabetes poses a great challenge for healthcare, to overcome which is required to provide comprehensive and evidence-based care for patients in order to prevent discernible vision loss.
3. At present long-term therapy with endless intravitreal injections of anti-VEGF in aging population, especially in persons with diabetes suffering from multimorbidity, causes safety concerns.
4. Nephrotoxicity in intraocular pharmacotherapy by anti-VEGF deserves a special attention in people with diabetes taking into account renal vulnerability.
5. Clinical suspicion of renal systemic complications associated with intravitreal injections of anti-VEGF agents should be borne in mind. Early identification and prompt management of such patients can help achieve earlier resolution and positive outcomes.

Introduction

Vascular Endothelial Growth Factor inhibitors (anti-VEGF), such as ranibizumab, afluvercept and bevacizumab delivered intraocularly, reinvigorate ocular pharmacotherapy in general [1], and diabetic retinopathy (DR) therapy in particular.

Currently DR as a most common visually disabling neurovascular complication of diabetes poses a great challenge for healthcare [2], to overcome which is required to provide comprehensive and evidence-based care for patients in order to prevent discernible vision loss.

Pathogenesis of DR is multifactorial, including vascular permeability, tissue hypoxia and angiogenesis with a cardinal role of VEGF [3] making it an attractive druggable target [4].

Multiple influential trials have evidenced therapeutic potential of such anti-VEGF agents, as ranibizumab, afluvercept, and recently brolicizumab, conbercept in management of DR with or without diabetic macular edema (DME). However, real-word experience underscores a need for in-depth evaluation of undesirable effects accompanying the therapy [5-9]. It is noteworthy that at present long-term therapy with endless intravitreal injections of anti-VEGF in aging population, especially in persons with diabetes suffering from multimorbidity, causes safety concerns.

It is well-known that not only DR, but also Diabetic nephropathy (DN) is a microvascular complication of diabetes, which directly correlates with the severity of retinopathy [10].

Importantly, one of the most common causes of chronic kidney disease (CKD) and renal disorders, manifesting as urinary alterations, proteinuria or kidney failure, is diabetes [11]. Approximately 80% of patients with DR suffer from diabetic renal disease [12].

The review by Hanna and colleagues [13] cover a significant amount of works that evaluate impact of intravitreal injections of anti-VEGF on systemic renal effects, including also patients with DR and DME. The authors highlighted that accumulating evidence has suggested that systemic absorption of antiangiogenics could cause or accelerate proteinuria, glomerulonephritis, decreased estimated glomerular filtration rate (eGFR) and concluded that clinicians should be aware of “the potential for adverse renal risks” in such pharmacotherapy.

Further supportive data for this notion were obtained by Fang et al. [14] where it was shown a persistent decline in eGFR in DME patients documented in cohort study within the 2-year of treatment. Their results reveal that poor baseline eGFR correlates with a need for renal replacement therapy. Another large cohort study of patients with DR reports kidney malfunction in cases with a baseline eGFR above 30 ml/min/1.73 m².

The recent case-control study conducted by Rivero et al. [12] evaluated the effect of anti-VEGF agents on renal function in patients with diabetes and with or without CKD. This study adds more to the body of knowledge about anti-VEGF-related nephrotoxicity highlighting that ophthalmopharmacotherapy by antiangiogenics is a risk factor for CKD and fast development of end-stage kidney disease in patients suffering from CKD.

Recently Cai et al. [15] have evidenced the same risk of kidney failure in bevacizumab, ranibizumab and afluvercept injections respectively. This impact is more prominent in patients with diabetes.

The latest population-based retrospective cohort study was

conducted by Lee et al. [16] to assess the risk of adverse renal events of afluvercept comparing to ranibizumab in cases of DME. It was documented the incidence rate of adverse renal events per 1000 person-years equal to 138.7 and 102.2 for afluvercept and ranibizumab, respectively. Researchers have evidenced the significantly increased risk of acute kidney injury and hospitalisation due to renal events in patients treated by afluvercept and concluded that obtained findings “provide a solid foundation for future studies to validate these results further”.

In conclusion, nephrotoxicity in intraocular pharmacotherapy by anti-VEGF deserves a special attention in people with diabetes taking into account renal vulnerability. Multidisciplinary approach with pharmacovigilance in antiangiogenic therapy is required. It is advisable that ophthalmologists should collect current medical history, and general practitioners should collect current ocular history. Clinical suspicion of renal systemic complications associated with intravitreal injections of anti-VEGF agents should be borne in mind. Early identification and prompt management of such patients can help achieve earlier resolution and positive outcomes.

Transparency & Ethical requirements

Ethics approval statement: N/a

Patient consent statement: N/a

Declaration of funding: There is no sponsorship/funding.

Declaration of financial/other relationships: There are no relationships to be declared.

Disclosure of potential conflicts of interest: The author has any potential conflicts of interest to disclose.

Acknowledgement: This article is derived in part from an Article published in Cutan Ocul Toxicol 2025 Mar 14 <copyright Taylor & Francis>, available online: <http://www.tandfonline.com> DOI:10.1080/15569527.2025.2475445.

Author contributions: Marianne L. Shahsuvaryan was involved in the conception and design, analysis and interpretation of the data; the drafting of the paper and revising it critically for intellectual content; and the final approval of the version to be published; and agree to be accountable for all aspects of the work.

References:

1. Santorsola M, Capuozzo M, Nasti G, et al. Exploring the Spectrum of VEGF Inhibitors' Toxicities from Systemic to Intra-Vitreal Usage in Medical Practice," *Cancers (Basel)*. 2024;16(2):350. doi: 10.3390/cancers16020350.
2. Kaur A, Kumar R, Sharma A. Diabetic Retinopathy Leading to Blindness- A Review. *Curr Diabetes Rev.* 2024;20(9):e240124225997.doi:10.2174/0115733998274599231109034741.
3. Wal P, Wal A, Gupta D, et al. Diabetic retinopathy: Stressing the function of angiogenesis, inflammation and oxidative stress," InTargeting Angiogenesis, Inflammation, and Oxidative Stress in Chronic Diseases 2024 Jan 1 (pp. 323-348). Academic Press.
4. Wang L, Liu WQ, Broussy S, et al. Recent advances of anti-angiogenic inhibitors targeting VEGF/VEGFR axis. *Front Pharmacol.* 2024;14:1307860.doi:10.3389/fphar.2023.1307860.
5. Zehden JA, Mortensen XM, Reddy A, et al. Systemic and

Ocular Adverse Events with Intravitreal Anti-VEGF Therapy Used in the Treatment of Diabetic Retinopathy: a Review. *Curr Diab Rep.* 2022;22(10):525-536. doi: 10.1007/s11892-022-01491-y.10.1007/s11892-022-01491-y.

- 6. Cheema AA, Cheema HR. Diabetic Macular Edema Management: A Review of Anti-Vascular Endothelial Growth Factor (VEGF) Therapies. *Cureus.* 2024;16(1):e52676. doi: 10.7759/cureus.52676.
- 7. Binder S. Loss of reactivity in intravitreal anti-VEGF therapy: tachyphylaxis or tolerance? *Br J Ophthalmol.* 2012;96(1):1-2. doi: 10.1136/bjophthalmol-2011-301236.
- 8. Del Cura Mar P, Carballés MJC, Sastre-Ibáñez M. Risk of renal damage associated with intravitreal anti-VEGF therapy for diabetic macular edema in routine clinical practice. *Indian J Ophthalmol.* 2023;71(8):3091-3094. doi: 10.4103/IJO.IJO_44_23.
- 9. Lye LF, Chou RH, Wu TK, et al. Administration of Bevacizumab and the Risk of Chronic Kidney Disease Development in Taiwan Residents: A Population-Based Retrospective Cohort Study. *Int J Mol Sci.* 2023 Dec 26;25(1):340. doi: 10.3390/ijms25010340.
- 10. Tang S, An X, Sun W, et al. Parallelism and non-parallelism in diabetic nephropathy and diabetic retinopathy. *Front Endocrinol (Lausanne).* 2024;15:1336123. doi: 10.3389/fendo.2024.1336123.
- 11. Esposito P, Picciotto D, Cappadona F, et al. Multifaceted relationship between diabetes and kidney diseases: Beyond diabetes. *World J Diabetes.* 2023;14(10):1450-1462. doi: 10.4239/wjd.v14.i10.1450.
- 12. Rivero M, Fernández-Vidal M, Sandino J, et al. Effect of Intravitreal Anti-Endothelial Growth Factor Agents on Renal Function in Patients With Diabetes Mellitus. *Kidney Int Rep.* 2024;9(5):1397-1405. doi: 10.1016/j.ekir.2024.02.003.
- 13. Hanna RM, Barsoum M, Arman F, et al. Nephrotoxicity induced by intravitreal vascular endothelial growth factor inhibitors: emerging evidence. *Kidney Int.* 2019;96(3):572-580. doi: 10.1016/j.kint.2019.02.042.
- 14. Fang YC, Lai IP, Lai TT, et al. Long-Term Change in Renal Function After Intravitreal Anti-VEGF Treatment for Diabetic Macular Edema: A 2-Year Retrospective Cohort Study. *Ophthalmol Ther.* 2023;12(6):2977-2988. doi: 10.1007/s40123-023-00771-4.
- 15. Cai CX, Nishimura A, Bowring MG, et al. Similar Risk of Kidney Failure among Patients with Blinding Diseases Who Receive Ranibizumab, Aflibercept, and Bevacizumab: An Observational Health Data Sciences and Informatics Network Study. *Ophthalmol Retina.* 2024;8(8):733-743. doi: 10.1016/j.oret.2024.03.014.
- 16. Lee WA, Shao SC, Hsieh MH, Liao TC, Lin SJ, Lai EC. Adverse renal events between ranibizumab and aflibercept in patients with diabetic macular oedema in Taiwan: a comparative cohort study. *Br J Ophthalmol.* 2025 May 16:bjo-2024-325509. doi: 10.1136/bjo-2024-325509. Epub ahead of print.