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Abstract 
Fluorescence imaging has been widely used in research labs and industry, 

which brings remarkable impact in biophysics, neuroscience, and 

biochemistry. Fluorescence generated with low-intensity can be a major 

issue in the application of fluorescence imaging. In this work, three filters 

combined with lifting wavelets and simple mathematic functions have been 

made for enhancing the images acquired from the fluorescence imaging. 

Furthermore, they are found to be effective for highlighting the profiles in 

the images acquired from low-light condition and a near-infrared camera. A 

matched filter was applied for comparing study. Moreover, they can be 

utilized for extracting the profiles in the underwater images and fusing 

images. Our filters are envisioned to be useful in pattern recognition, portrait 

rendering, and intelligent surveillance. 
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1. Introduction 
Molecules can emit fluorescence with longer wavelength when excited by a 

light source with shorter wavelength. This phenomena of optical physics has 

been developed into a way of fluorescence imaging, which is important for 

biomedical and biochemical applications [1-5]. One major problem that 

accompanies the fluorescence imaging process is that the fluorescence 

intensity is insufficient. This can be due to the thermal noise of instruments 

or the existing of complex imaging environment. This problem is 

exacerbated in the imaging of biological tissues due to the presence of bodily 

fluids or unidentified molecules in biological samples. These biological 

substances will scatter the light or dilute the fluorescence. This results in 

blurred imaging features and loss of important information, which makes 

biological features difficult to understand. The improvement of process 

technology or the advances in hardware is certainly one way to change this 

problem. Another way to solve this problem may be using mathematical 

methods [6], where the technique of image enhancement is used by using a 

wavelet method. Generally, the wavelet can suppress the high-frequency 

information that is associated with the noise while enhance the low- 

frequency section that is related with the main feature of the object. This 

makes the wavelet very useful in the image enhancement. The modification 

of its framework may introduce more robust method for the image 

enhancement. In the work done by Yang, R. et al. [7], a very flexible 

framework based on basic functions was proposed. It can be used to extract 

or highlight the main profile of the images. This is inspiring, which means 

that a combinational set of functions can be integrated. Firstly, a wavelet 

transform can be performed. Secondly, functions are used for filtering 

specific frequency. Thirdly, a new output image is generated based on that 

selected frequency. 
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The enhancement of low-light images are found to be useful in 

many application fields, including satellite remote sensing, security 

surveillance, autonomous driving, and rail transport. Most of the 

approaches on image enhancement are based on convolutional 

neural networks and machine learning [8-11]. Zhou, J. et al. built a 

double-teacher knowledge distilling network for enhancing 

underwater images. In their framework, a dynamic teaching 

strategy was applied, which gained improvement of the network’s 

ability to handle complicated underwater environment [8]. In one 

work, it is found that underwater image enhancement can be done 

via building a dual-branch attention mechanism, where the network 

takes cross-view inputs and utilizes the feature alignment module 

to explore degradation from different views [9]. In another work, it 

can be seen that the dual-color space and dense multiscale attention 

blocks can be utilized to enhancing images, where a color-guided 

map is introduced to guide the network to process color- 

degradation information. This can enormously improve color 

restoration [10]. In some cases, the images are degraded that a lot 

of structural and statistical information are destroyed. This can lead 

to the drift of the feature representation in a global scale. To solve 

these issues, the researchers established estimation about the 

degree of feature drifts using a statistical mechanism [11]. A 

variational model was further developed to achieve much 

correction of the color. In addition, a histogram-equalization was 

performed to improve the image contrast [11] to get the ultimate 

enhancement of the images. 

Another aspect in this research field is the application of Retinex 

theory [12-16], where the low-light images are decomposed into 

several layers. Zhou, J. et al. combined underwater noise, texture, 

and gradients into a variational Retinex model to reduce noise 

amplification [12]. Li, X. et al. developed a method called as Deep 

Parametric Retinex Decomposition, where three modules of 

parametric Retinex decomposition, enhancement, and refinement 

are combined [13]. This new Retinex model can greatly avoid color 

deviation. Liu, W. et al. employed termed Reflectance-Correction 

Retinex for enhancing thermal images acquired from carbon fiber 

reinforced polymers [14]. Li, C. et al. constructed a fractional 

structure and texture aware model, which is integrated in the 

Retinex model to get the image enhancement [15]. Ma, T. et al. 

used a multi-scale feature extraction module using the framework 

of the Retinex theory, which showed the capability of extracting 

image details and structural information [16]. All these works show 

the vivid application of the Retinex theory in the image 

enhancement. A database may be required for using these 

approaches. It brings difficulty for those who are not professional 

at artificial intelligence and who have limited resources in 

databases. Simple and quick approaches are constantly in need. 

Near infrared imaging is not easy to be done in the research lab, 

given that the near infrared camera contains a lot of thermal noise 

[17-20]. Especially, the intensity of near infrared light can be very 

low in the imaging [21]. This generated those images with very low 

intensity and dilute features. A convenient method is required for 

processing those images acquired from the near infrared imaging. 

Herein, we have proposed three frameworks by combing a wavelet 

and a set of simple functions. Those images acquired from blue- 

fluorescence imaging, low-light conditions, and near infrared 

camera were enhanced. Furthermore, these frameworks were used 

for image fusion, especially involving low light images as the input 

images. Thirdly, their application for extracting the profiles in 

underwater imaging was explored. In Sec. 2, how the frameworks 

were constructed was presented in details. In Sec. 3, several kinds 

of research outcome for these filters were shown. The limitations 

of our current study and future works were discussed. In Sec. 4, we 

summarized our finding. Our frameworks are presenting 

approaches simple and effective, which are envisioned to play an 

important role in advanced imaging and fluorescence microscopes. 

 

2. Materials and Methods 

The blue-fluorescence images were taken by a lab-built facility. A 

UV-laser with emission wavelength of 350-355 nm was used to 

irradiate the samples from the side. A blue-light filter was put 

above the sample which would reduce the UV light irradiate. A 

camera was connected with the blue-light filter and collect the blue 

fluorescence image. The low-light images were taken by a cell 

phone (iPhone Xs Max). 

The images acquired from a near infrared camera were obtained 

from a lab-built setup. A near-infrared laser with emission 

wavelength of 1064 nm was used to irradiate the samples. A near 

infrared camera was put above the sample to capture the image of 

the sample. 

Three filters were developed using simple mathematical functions. 

Their frameworks are shown in Algorithms 1-3. In these 

frameworks, a lifting wavelet was firstly used to reduce some of 

the inherent noise in the images. Moreover, several functions were 

tested for the enhancement of the main features of the images. If 

one specific set of functions were found to be effective, a 

continuous operation would be followed using these functions. 

Ultimately, the filtered values could be used for constructing a new 

output image. 

 

Algorithm 1. The Log filter 

 

1) We used a lifting-wavelet method for preprocessing the image, which is similar to Ref.[6]. We briefly introduce 

this preprocessing in the following steps of 2)-17). 

2) An input colored image is firstly read and converted into a gray image. We introduce a 2-dimensional matrix 

Q which represents the input image. The size of Q is made to be the scale of 1064×1064. We define a parameter 

M, which represents the length of Q. We define a parameter MM, which is equal to one half of M. 

3) We define two equations based on the value of Q：Q1=Q ([1: 2: M-1], :);Q2=Q ([2: 2: M], :). 

4) for each iteration j_hc=1:MM do 

high_col (j_hc, :)=Q1(j_hc, : )-Q2 (j_hc, : ); 

end for 
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5) for each iteration j_lc=1:MM do 

low_col ( j_lc,:)=Q2(j_lc,:)+1/2*high_col (j_lc,:); 

end for 

6) We define two equations: 

f_col ([1:1: MM], :)=low_col ([1:MM], :); 

f_col ([MM+1:1: M], :)=high_col ([1:MM], : ); 

7) The values for Q1 and Q2 are assigned as: 

Q1=f_col (: , [1: 2: M-1]); 

Q2=f_col (: , [2: 2: M]). 

8) for each iteration j_hr=1:MM do 

high_row (: , j_hr)=Q1(:, j_hr)-Q2(:, j_hr); 

end for 

9) for each iteration j_lr=1:MM do 

low_row(: , j_lr)=Q2(:, j_lr)+1/2*high_row(:, j_lr); 

end for 

10) We build four equations: 

f_row(: , [1:1:MM])=low_row(:,[1:MM]); 

f_row (: , [MM+1:1:M])=high_row(:,[1:MM]); 

Q1=f_row(: , [MM+1:1:M]); 

Q2=f_row(: , [1:1:M]). 

11) for each iteration j_Ir=1:MM do 

low_row (: , j_Ir)=f2 (: , j_Ir)-1/2*f1 (: , j_Ir); 

end for 

12) for each iteration j_hr=1:TT do 

high_row (: , j_hr)=f1(:,j_hr)+low_row (:, j_hr); 

end for 

13) We build four equations: 

f_row (: , [2: 2: M])=low_row(:, [1:MM]); 

f_row (: , [1: 2: M-1])=high_row(:, [1:MM]); 

Q1=f_row ([MM+1: 1: M], : ); 

Q2=f_row ([1:1:MM], :). 

14) for each iteration j_lc=1:MM do 

low_col (i_lc, :)=Q2 (i_lc, :)-1/2*Q1(i_lc, :); 

end for 

15) for j_hc=1:MM do 

high_col (j_hc, :)=Q1(i_hc,:)+low_col (j_hc,:); 

end for 

16) We build two equations: 

f_col ([2: 2: M], :)=low_col ([1: MM], :); 

f_col ([1: 2: M-1], :)=high_col ([1: MM], :). 

17) We define a parameter of V, which is defined as V=a*f_col. Here, a is a constant. We conduct wavelet transform 

of V using a traditional wavelet of sym4. This will produce a coefficient r, which represents a specific grayscale 

values r. 

18) The following calculation is performed with respect to the value of r: 

r2=exp(r); 

r3=sinh(r); 

r4=sinh(cos(r2))./log(r3); 

r5=a2*r4.^a1; 
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Algorithm 2. The Hypot filter 

 
Algorithm 3. The Sech filter 

 

3. Results 

3.1 Different profiles of the images can be generated through the filters 
 

Figure 1: Sample images used for testing the filters. They are denoted as follows: (a) River. (b) Sky. (c) Yard. (d) Roof. (e) Wall. 

 

Figure 2: Processing the sample images using Log filter with different scale number. (a) a1=2. (b) a1=400. (c) a1=800. The images 

from left to right are River, Sky, Yard, Roof, and Wall. 

Here, a1 and a2 are both constants. 

19) An output image is shown based on the value of r5. 

1) A lifting-wavelet transform is done based on the method proposed on Ref. [6], which will generate a specific 

grayscale value of t. This process is similar to those steps of 2)-17) in Algorithm 1. 

2) The following calculation is applied with respect to the value of t. 

t2=b1*cosh(t); 

t3=b2*sinh(t); 

t4=hypot(b3*t3, t2); 

t5=b5*t4.^b4; 

3) An output image will be shown using the value of t5. 

1) A lifting-wavelet transform is carried on by using the approach proposed by Man Jia et al. [6], which will 

generate some grayscale value of u. This is similar to those steps of 2)-17) in Algorithm 1. 

2) The value of u is continued to be processed by the following: 

u2=d1*acosh(u); 

u3=d2*asinh(u); 

u4=d3*sech(d4*cos(u3))./u2; 

u5=d5*u4.^d6; 

3) An output image is shown via the value of u5. 
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Figure 1: listed several sample images for testing the performance 

of these three filters. Several key parameters in these filters were 

varied to see the output features of these filters. As shown in Figs.2- 

4, different profiles can be generated when varying the value of a1, 

b3, and d4. It can be seen that these filters can be effectively 

modified when different output profiles of the images are expected. 

 

 
Figure 3: Processing the sample images using Hypot filter with different value of b3. (a) b3=0.1. (b) b3=1.7. (c) b3=2.7. The images 

from left to right are River, Sky, Yard, Roof, and Wall. 
 

Figure 4: Processing the sample images using Sech filter with different value of d4. (a) d4=0.1. (b) d4=8. (c) d4=80. The images from 

left to right are River, Sky, Yard, Roof, and Wall. 
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Figure 5: Sample blue fluorescence images were acquired. (a) Tube1. This image is acquired from a 1.5 mL tube filled with Xanthan 

gum. (b) Tube2. This image is acquired from a 10 mL tube filled with Xanthan gum. (c) Tube3. This image is acquired from a gl ass 

tube filled with xanthan gum. (d) Pipette. This image is acquired from a 100 μL pipette filled with the xanthan gum. (e) Bottle. This 

image is acquired from a glass bottle filled with xanthan gum. 

Figure 6: The sample blue fluorescence images are processed by the Log filter. (a) Tube1 processed. (b) Tube2 processed. (c) Tube3 

processed. (d) Pipette processed. (e) Bottle processed. 

 

Table 1: PSNR values of the input images processed by the three filters 

 

The images The Log 

filter 
The Hypot filter The Sech filter 

Tube1 1.5632 23.2950 22.3847 

Tube2 5.4696 14.6732 26.2403 

Tube3 7.6156 15.3289 25.8500 

Pipette 4.5120 10.9682 24.5644 

Bottle 2.7849 19.1207 27.9680 

The average value 4.3891 16.6772 25.4015 
 

3.2. Enhancing blue fluorescence images 

Several input images are shown in Fig. 5 a specifically built 

instrument for acquired the blue-fluorescence images was used to 

collect these images. Figs. 6-10 present the processed images via 

the Log filter, the Hypot filter, and the Sech filter. The fluorescence 

intensity as shown in the input images is very low. However, after 

using these filters, the main features are extracted and 

strengthened, which showed the effectiveness of these filters for 

the image enhancement. The peak signal-to-noise ratio (PSNR) 

values are listed in Table 1. It clearly showed that the Sech filter 

 
got the highest average value for the PSNR. 

3.3 Enhancing weak-light images 

Low-light images are acquired from the environment where the 

light intensity is not enough. We used five sample images as input 

images to test the performance of the three filters (Fig.9). After 

processing, the main features that hided in the block background 

were shown (Figs. 10-12). We calculated the corresponding values 

of the PSNR. It can be seen that the Sech filter got the highest 

average value for the PSNR (see Table 2). 
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Figure 7: The sample blue fluorescence images are processed by the Hypot filter. (a) Tube1 processed. (b) Tube2 processed. (c) 

Tube3 processed. (d) Pipette processed. (e) Bottle processed. 
 

Figure 8: Sample blue fluorescence images are processed by the Sech filter. (a) Tube1 processed. (b) Tube2 processed. (c) Tube3 

processed. (d) Pipette processed. (e) Bottle processed. 

 
 

Figure 9: Sample images were acquired in low-light condition via a cell phone. (a) Weak37. (b)Weak42. (c)Weak43. (d) Weak44. (e) 

Weak45. 

 
Figure 10: Sample images acquired from low-light condition were processed by the Log filter. (a) Weak37 processed. (b)Weak42 

processed. (c)Weak43 processed. (d) Weak44 processed. (e) Weak45 processed. 
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Table 2: PNSR values of the low-light images processed by the three filters 

The images The Log 

filter 

The Hypot filter The Sech filter 

Weak37 1.5222 4.0648 14.5794 

Weak42 2.1731 3.5237 12.5184 

Weak43 1.8186 3.6654 13.4960 

Weak44 4.0834 2.9681 9.3496 

Weak45 2.8832 3.0624 10.3166 

The average value 2.4961 3.4569 12.0520 
 

Figure 11: Sample images acquired from low-light condition were processed by the Hypot filter. (a) Weak37 processed. (b)Weak42 

processed. (c)Weak43 processed. (d) Weak44 processed. (e) Weak45 processed. 

 
 

Figure 12: Sample images acquired from low-light condition were processed by the Sech filter. (a) Weak37 processed. (b)Weak42 

processed. (c)Weak43 processed. (d) Weak44 processed. (e) Weak45 processed. 
 

 

Figure 13: Sample images were acquired from a near infrared camera. (a) Nir4. (b) Nir5. (c) Nir6. (d) Nir7. (e) Nir9. 
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Figure 14: The images acquired from a near infrared camera were processed by the Log filter. (a) Nir4 processed. (b) Nir5 processed. 

(c) Nir6 processed. (d) Nir7 processed. (e) Nir9 processed. 

3.4 Enhancing the images acquired from near infrared imaging 

Several images obtained from the near infrared camera were used 

as the input images (Fig.13). Figs.14-16 show that clear features 

can be found after using these filters. Table 3 presents that the Sech 

filter shows the highest average PNSR-value, which indicates that 

the Sech filter shows the highest performance in these three filters. 
 

 
Figure 15: The images acquired from a near infrared camera were processed by the Hypot filter. (a) Nir4 processed. (b) Nir5 

processed. (c) Nir6 processed. (d) Nir7 processed. (e) Nir9 processed. 

Figure 16: The images acquired from a near infrared camera were processed by the Sech filter. (a) Nir4 processed. (b) Nir5 processed. 

(c) Nir6 processed. (d) Nir7 processed. (e) Nir9 processed. 
 

Figure 17: The blue fluorescence images processed by a matched filter. (a) Tube1. (b) Tube2. (c) Tube3. (d) Pipette. (e) Bottle. 

 

       Figure 18: The low-light images processed by a matched filter. (a) Weak37. (b) Weak42. (c) Weak43. (d) Weak44. (e) Weak45. 
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Figure 19: The images acquired from a near infrared camera was processed by a matched filter. 

 

Table 3: PNSR values of the images acquired form a near infrared camera 
 The Log filter The Hypot filter The Sech filter 

Nir4 18.6266 6.4112 38.0966 

Nir5 21.6068 6.4957 39.1760 

Nir6 22.1910 6.5001 41.1884 

Nir7 24.2181 6.5082 46.4245 

Nir9 7.9523 4.8970 37.0348 

The average value 18.919 6.1624 40.3841 

 

Table 4: PNSR values of the images processed by the matched filter 

The images The matched 

filter 

The images The 

matched 

filter 

The images The 

matched 

filter 
Tube1 6.6127 Weak37 6.3534 Nir4 0.1364 

Tube2 1.7516 Weak42 4.8549 Nir5 0.4934 

Tube3 1.0023 Weak43 5.4550 Nir6 0.4852 

Pipette 3.0075 Weak44 3.1352 Nir7 0.2825 

Bottle 3.6810 Weak45 3.8254 Nir9 1.2444 

Average 

value 

3.2110 Average 

value 

4.7248 Average 

value 

0.5284 

 

Figure 20: The application of the filters in image fusion. (a) A sample image for image fusion. (b) Another sample image for the 

image fusion. (c) The image fusion via the Log filter. (d) The image fusion via the Sech filter. (e) The image fusion via the Hypot 

filter. 
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Figure 21: Sample images acquired from underwater condition. (a) Water13. (b) Water14. (c) Water15. (d) Water17. (e)Water19. 

Here, several objects are put underwater for imaging, including a red rock, a yellow rock, a small flower bottle, a sweet potato, and a 

bulk rock. 

 
Figure 22: Sample images acquired from underwater condition were processed by the Log filter. (a) Water13. (b) Water14. (c) 

Water15. (d) Water17. (e)Water19. 

 

 

Figure 23: Sample images acquired from underwater condition were processed by the Sech filter. (a) Water13. (b) Water14. (c) 

Water15. (d) Water17. (e) Water19. 

 

Figure 24: The underwater images processed by the Hypot filter. (a) Water13. (b) Water14. (c) Water15. (d) Water17. (e)Water19. 
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Figure 25: The underwater images processed by the Sobel operator. (a) Water13. (b) Water14. (c) Water15. (d) Water17. (e)Water19. 
 

3.5. Comparing the performance of a matched filter 

We used a matched filter to compare the performance [22]. 

Figs.17a-17e show the output of the blue fluorescence images 

processed by the matched filter. Figs.18a-18e show the output of 

the low-light images processed by the matched filter. Figs.19a-19e 

show the output of the near-infrared images processed by the 

matched filter. Table 4 shows the corresponding PNSR values 

associated with those images processed by the matched filter. The 

average values of the PSNR are 3.2111, 4.7248, and 0.5284 

separately for the blue fluorescence images, the low-light images, 

and the near-infrared images. Clearly, the images acquired via the 

matched filter do not look as good as those obtained through our 

filters (see Figs.17-19). 

3.6 Application in image fusion 

The images obtained from different imaging techniques, including 

visible and near infrared imaging, can provide a vivid and 

comprehensive understanding of the features of the samples being 

studied. Therefore, the technology of the image fusion has been 

widely used in industry and medical care [23-26]. Given that our 

filters are able to enhance the low light images, we used them for 

the image fusion. Here, our filters were used to extract the low light 

images firstly. Then, a wavelet transform was applied to combine 

the frequency of the two input images together. Finally, an inverse 

of the wavelet transform was used to get the final fused image. 

Figs.20a-20e showed the fusing impact. We used one low-light 

image as the input image. Our three filters can capture those key 

features in the low-light image and fused those features in the 

output image. They showed the effectiveness in the image fusion 

involved with low-light images. 

3.7 Extracting profiles of the image acquired from underwater 

condition 

Getting images with clear features are essential prerequisite for 

seabed resources exploration and marine environment monitoring, 

which makes the profiles extraction from the underwater images is 

very important [27-31]. The complexity of water and lighting 

environment makes underwater images may go through color 

distortion and contrast loss. Therefore, new methods or 

frameworks should be continuing to develop for this purpose. We 

used our filters to process the underwater images. Figs.21a-21e are 

5 input underwater images. Figs.22-24 are the processed images 

via our three filters. It can be seen that they showed the 

effectiveness for extracting the key profiles of the underwater 

images. We used a Sobel operator for comparing (see Figs.25a- 

25e). It can be noted that the Sobel operator is not good enough to 

acquire the main profile for the underwater images. For example, 

the profiles of the rock, the bottle, and the sweet potato were not 

shown in the output images processed by the Sobel operation. 

4. Discussion 

One of the limitation in our framework is that we have to adjust the 

parameter and the constants in our filters in order to have a best 

output. For us, it is not a difficult job given that we are proficient 

with the operation of our framework. This may be a challenge for 

those who are not familiar with our framework. Future research 

would be focused on making GUI that can integrate all the 

parameter and the constants. 

It has been shown the images acquired with the assistance of the 

nanoparticles and special small molecules can show good image 

contrast and high penetration depth [32-38]. This may be due to the 

existence of the nanoparticles that can change light scattering and 

absorption. This would be our future endeavor. 

Our work can raise the general interest of the readers in the field of 

electrical engineering given that the processing of the fluorescence 

images, the underwater images, the low-light images, and the near 

infrared images are required in many instruments in this field. Our 

work can provide general design of filters for the image 

enhancement. It can provide a worthwhile about setting up a useful 

filter for processing the low-light images, the underwater images, 

the near-infrared images, and the fluorescence images. Specially, 

our algorithms provide an alternative way of thinking for 

researchers who don't want to follow the rules and ecosystems of 

machine learning, artificial intelligence, and neural networks. Most 

of the previously published works are related with machine 

learning, which needs a large database to be trained. However, our 

manuscript provides optional method for processing, which does 

not need a database. Moreover, our frameworks can raise the 

research interest about those scientists who are doing works about 

the image processing given that our designed filters can be 

environed to be integrated into several popular filters, including the 

Butterworth filter, the matched filter, and the filter based on 

watershed algorithm. 

Research interest in seeking simple, affordable, and portable 

calculation platforms is growing, which is especially important in 

developing countries, resource-limited areas, and rural regions. It 

doesn’t need to use massive calculation systems for running our 

filters. No GPU or supercomputer or CPU array were used in our 

study. Only a Dell Desktop (OptiPlex 7070) is required for running 

our filters. This may raise the interest of the researchers in Asian, 

African, and Latin American countries who have limited access to 

computer resources. 

Several simple functions including logarithm, hypotenuse, and 

hyperbolic secant are used. However, it does not mean that other 

functions are not workable. The selectivity of the functions need to 
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be further studied in our future work. 

It has been shown that the technique of imaging in the second near- 

infrared window (NIR-II) enables imaging with high resolution and 

good contrast by using the reduced light scattering and auto- 

fluoresecence [39-43]. This would be one of our future research 

direction that the imaging camera and technique in the NIR-II 

region are employed, where images with higher contrast can be 

generated. 

It should be noted that organic molecules that contained 

macrocyclic rings show major promise in imaging technology [44- 

50]. They provide multiple π-electrons group for enhancing the 

fluorescence. This would be another direction of our future 

research, where advanced imaging molecules would be used to 

generate fluorescence images with high quality. 

Profiles extraction is a key method for identifying dental diseases, 

breast cancer, and pancreatic ductal adenocarcinoma [51-53]. Our 

filters with powerful ability of the profiles extraction may be a 

possible assist to this research problem. Future research would be 

focused on animal study combined with our filters. 

5. Conclusions 

In this work, we present three new filters for enhancing the images 

acquired in low light condition, blue fluorescence imaging, and 

near infrared camera. Utilizing the lifting wavelet combined with 

simple mathematical functions, our method implements a contrast 

enhancement. Additionally, we applied these filters for the image 

fusion as well as extraction of the profiles for the underwater 

images. Comparative study using the matched filter and the 

traditional Sobel filter indicates the effectiveness of our approach. 

This work showed a potential path towards making almighty filters 

for processing the images via simple functions. 
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