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Abstract 
Basal body temperature (BBT) is a convenient, continuous, non-invasive, 

and cost-effective method with irreplaceable advantages in the field of 

gynecological reproductive endocrinology. This review provides a 

comprehensive overview of the development history of BBT, analyzes its 

physiological regulatory mechanisms and interpretation, and examines the 

current state of research on its clinical applications in reproductive medicine. 

While many aspects of BBT’s clinical use and underlying mechanisms 

remain to be fully understood by modern medicine, the advancement of 

artificial intelligence (AI) technologies and their integration into BBT 

research are paving the way for a new phase in its development and 

application. 
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Introduction 
Basal body temperature (BBT) is a valuable tool in reproductive medicine 

for diagnosing endocrine disorders—such as infertility, ovulatory 

dysfunction, and luteal phase deficiency—and for evaluating treatment 

efficacy. Despite its advantages, attention to BBT has waned with the rise 

of modern diagnostic technologies, and many aspects of its clinical 

application and regulatory mechanisms remain unclear. This paper 

systematically reviews literature on BBT’s development, regulation, and 

clinical utility, aiming to renew interest and foster further advancements in 

this field. 

1. Development of BBT Measurement 

Basal body temperature (BBT) monitoring has played a significant role in 

understanding female reproductive physiology. The invention of the 

thermometer by Galileo Galilei in 1593 laid the foundation for temperature-

based observation. In 1868, William S. Squire first identified the biphasic 

pattern of BBT during menstrual cycle [1-4]. In 1905, Dutch gynecologist 

Theodoor Hendrik Van de Veld linked BBT shifts associated with ovulation 

and later, in 1926, attributed the temperature rise to luteal function, noting 

its association with increased vaginal secretions and mid-cycle abdominal 

pain [5]. With advancements in ultrasound and hormone assays, BBT’s 

clinical use declined, and its reliability was questioned [6]. However, recent 

studies highlight its correlation with hormonal fluctuations [7]. Modern 

technology, including smartphone apps and different kinds of wearable 

sensors, has improved BBT tracking by enabling continuous, dynamic 

monitoring [8-15]. Despite advancements, current clinical data are 

insufficient to fully assess the accuracy and consistency of these methods, 

which are crucial for objectively understanding BBT's physiological 

mechanisms and hormonal correlations. 

 

2. Physiological Mechanisms Regulating BBT 

Core body temperature, which reflects the temperature of deep tissues, is 

regulated at around 37°C in most placental mammals and follows a 24-hour 

circadian rhythm [16-19]. Core temperature varies with the menstrual cycle 
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 2. Physiological Mechanisms Regulating BBT 

Core body temperature, which reflects the temperature of deep 

tissues, is regulated at around 37°C in most placental mammals and 

follows a 24-hour circadian rhythm [16-19]. Core temperature 

varies with the menstrual cycle and is measured as basal body 

temperature (BBT) during the morning rest period. Although 

central arterial or mixed venous blood temperature ideally 

represents core body temperature, its inaccessibility makes 

commonly used sites—such as the mouth, axilla, ear canal, or 

tympanic membrane—provide less accurate indicators of core 

temperature, skin temperature is usually not a good indicator of 

core body temperature [20-21]. 

Estrogen, progesterone, and testosterone influence temperature-

sensitive neurons in the hypothalamus, which plays a key role in 

regulating body temperature and homeostasis. These hormones 

may have synergistic or antagonistic effects on temperature 

regulation [22-26]. 

During the follicular phase, BBT is low due to estrogen [27]. 

Estrogen likely regulates body temperature by acting on 

temperature-sensitive neurons in the preoptic area of the 

hypothalamus via nuclear steroid receptors, alternating the 

excitatory firing rate and integrating thermal signals in key brain 

regions controlling thermoregulation [22]. Additionally, estrogen 

promotes lower body temperature by enhancing heat dissipation 

responses, such as increased vasodilation of skin blood vessels 

[28,29]. Studies show that follicular phase temperatures do not 

significantly change with age and have weak correlations with 

daylight duration and cycle length [30]. 

In the late follicular phase, just before ovulation, estradiol levels 

rise, causing core body temperature to reach its lowest point 

[29,31]. Correspondingly, studies show that average vaginal 

temperature decrease compared to the early follicular phase as 

estradiol increases before ovulation [29,31,32]. 

Many studies suggest that the rise in BBT during ovulation and the 

sustained high-temperature phase in the luteal phase are linked to 

progesterone's effects on temperature-sensitive neurons in the 

preoptic area of the brain [24,27]. However, this increase in BBT 

occurs 24-48 hours after plasma progesterone and 17-

hydroxyprogesterone levels rise, coinciding with the LH surge 

[33,34]. Furthermore, a linear increase between pregnanediol-3α-

glucuronide (PDG) levels and BBT is observed during ovulation, 

but once PDG levels exceed 10 mcg/mg Cr, BBT no longer rises 

[7]. This suggests that there is a limit to how much BBT can 

increase, even with higher PDG levels. Moreover, a study using 

smartphone applications found that luteal phase temperature shows 

age-related changes, with a gradual increase until it peaks at age 

29, stabilizing after age 42, and then declining [30]. 

BBT starts to decrease after the fourth month of pregnancy and 

returns to pre-ovulation levels by the fifth month. Although 

progesterone levels continue to rise during mid-pregnancy, the 

decrease in BBT suggests that progesterone is not the sole cause of 

the elevated temperature [35,36]. This implies an indirect 

relationship between progesterone and BBT [37]. Additionally, 

there is no significant change in norepinephrine levels before and 

after ovulation, suggesting that the rise in BBT after ovulation is 

mainly driven by norepinephrine release from the hypothalamus, 

influenced by estrogen during the follicular phase [38]. 

The relationship between progesterone and estrogen and its impact 

on BBT is intricate and not yet fully understood. Forman et al. 

observed BBT in 87 patients undergoing in vitro fertilization and 

found no correlation between BBT increase and progesterone 

levels or hormone stimulation type, suggesting that progesterone 

does not directly control temperature. Instead, it may interact 

synergistically with estrogen [39]. Additionally, the amplitude of 

the daily temperature rhythm decreases during the luteal phase, 

highlighting the critical role of the balance between progesterone 

and estrogen in regulating body temperature [20,40]. However, the 

specific dynamics of how those hormones interact remain unclear 

and warrant future investigation.  

In summary, progesterone and estrogen regulate body temperature 

through complex interactions and dynamic balances in both central 

and peripheral mechanisms. Their effects on vasodilation and 

vasoconstriction likely influence the hypothalamus, further 

modulating core body temperature. However, the exact 

physiological mechanisms behind BBT regulation remain unclear. 

Exploring these dynamics will offer a more comprehensive 

understanding of how hormones control thermoregulation across 

different phases of the menstrual cycle and pregnancy. 

3. Interpretation of BBT 

Basal body temperature (BBT), measured at rest upon waking, is 

0.3°C to 0.7°C higher during the luteal phase than the follicular 

phase [41]. The World Health Organization (WHO) defines the 

transition from low to high temperatures during ovulation as a rise 

of at least 0.2°C within 48 hours or less and sustained over three 

consecutive days, known as the "3/6 rule" [42-44]. A "cover line" 

can be drawn on BBT charts at the highest temperature from the 

six days before the rise. A sustained increase above this line 

confirms ovulation with a biphasic pattern [45]. BBT fluctuations 

can be influenced by numerous factors, including colds, 

inflammation, alcohol consumption, recording methods, sleep 

schedules, education level, and thermometer quality [42,52,53].  

Studies suggest that in conception cycles, early luteal progesterone 

levels rise more significantly, and both estrogen and progesterone 

are elevated during the mid-luteal phase compared to non-

conception cycles. These hormonal patterns may indicate high-

quality cycles favorable for conception [46]. 

The temperature changes during ovulation can vary in pattern 

across individuals. The fertile window spans six days, ending on 

the day of ovulation [47]. Within this window, pre-ovulatory 

temperature dips occur in 33%-75% of cycles [48]. The 

temperature rise during ovulation can follow different patterns: 

sharp and rapid (74%-82%), gradual (15%), stepwise (2%), or 

sawtooth. All show clear biphasic patterns [49,50]. However, other 

studies report 84% of BBT charts displaying a biphasic pattern, 

with 26% showing a rapid rise and 58% a gradual rise [51]. 

Small-scaled studies found no significant correlation between BBT 

and prolactin levels, or differences in BBT between groups with 

thyroid-stimulating hormone (TSH) levels above or below 2.5 

mU/L [54]. 

Though BBT patterns are useful for tracking ovulation and 

conception cycles, the reproductive medicine community has yet 

to establish a universally accepted standard for interpreting BBT, 

leading to variability in clinical practice [55].  

4. Clinical Applications of BBT 

Current literature suggests that observing BBT in clinical practice 

can offer insights into various physiological and pathological 

aspects:  

1) Observing Ovulation 
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 BBT-based ovulation predictions have an accuracy of 74-98%, as 

confirmed by studies using serum and urinary hormone levels and 

ultrasound examinations. Luteinizing hormone (LH) test kits have 

a significant margin of error when used alone, though widely used 

for ovulation detection. Combining basal body temperature (BBT) 

monitoring and reproductive apps can improve detection accuracy 

and shorten detection times [56-60].  

BBT is considered unreliable for accurately identifying luteinized 

unruptured follicles (LUFs). A study of 71 infertile women with 

normal menstrual cycles and biphasic BBT patterns found 15 cases 

(21.1%) of LUFs, confirmed through ultrasound, laparoscopy, 

hormone measurements, and endometrial histology [61]. Another 

study of 50 similar patients identified 3 cases (6%) of LUFs [62-

63].  

BBT alone is imprecise for predicting ovulation timing due to 

significant variability. In ovulatory cycles, 0-20% of BBT charts 

may show monophasic patterns, and 12-20% of monophasic BBT 

charts may still correspond to ovulation [57,64]. Even advanced 

application technologies have limited ability to accurately 

pinpointing ovulation days. Studies also report that follicular 

rupture may occur before or after the BBT rise, further 

complicating ovulation prediction [65-67]. For example, Buxton et 

al. found that in one-third of cases, ovulation had occurred over 24 

hours before the first BBT rise during laparoscopic exams [68]. 

Similarly, Newill et al. observed no conceptions when 

insemination occurred before day 11 of the cycle or more than 48 

hours after the BBT rise. Most conceptions occurred the evening 

before the rise [50]. 

Using BBT alone limits the accuracy of determining the ovulation 

window, but extending the prediction window can improve it. The 

concordance between the BBT nadir and LH peak on the same day 

is 20-30%. However, extending the prediction window by one day 

before and after the LH peak increases accuracy to 57-70%, and by 

two days improves accuracy rises to 83-98% [69]. Wilcox et al. 

found peak fertility occurs within the two days before ovulation 

[70].  

Polycystic ovary syndrome (PCOS) is the most common endocrine 

disorder in women, accounting for about 85% of ovulatory 

dysfunction cases. Using vaginal biosensors, researchers have 

generated reproductive cycle temperature curves that reveal 

significant differences in BBT among PCOS patients compared to 

healthy controls. PCOS patients display delayed temperature rises 

and greater daily fluctuations, despite a prolonged follicular phase 

and a generally normal luteal phase [54]. Liu et al. analyzed BBT 

patterns in 148 PCOS patients and found that the most common 

pattern was monophasic, followed by atypical biphasic, with no 

typical biphasic patterns observed [89]. 

Although the exact optimal date for conception may vary, most 

studies agree that the three days before ovulation represents the 

ideal fertile window. Combining BBT with cervical mucus 

observations and urinary ovulation tests enhances accuracy in 

identifying the fertile window. Overall, majority of studies 

conclude that BBT is a relatively accurate method for both 

retrospective and dynamic analysis of ovulation. 

2) Understanding Luteal Function: 

The American Society for Reproductive Medicine recommends 

BBT as a non-invasive diagnostic tool for luteal phase deficiency 

(LPD), though establishing diagnostic criteria for LPD is 

challenging due to the fluctuating nature of progesterone levels 

[72]. The average luteal phase lasts 12.4–13.7 days [56,71]. Many 

experts suggest considering LPD when the luteal phase is ≤10 days 

[72]. A slow post-ovulatory rise in BBT and luteal phase length are 

proposed diagnostic criteria for LPD. Studies suggest that a slow 

rise in BBT during ovulation may indicate poor ovulation or early 

luteal phase dysfunction, increasing the risk of miscarriage [73]. 

Women with LPD also show significant differences in temperature 

curves, including higher amplitude during the luteal phase 

compared to those with normal luteal function [54].          

Some studies suggest BBT can only detect severe LPD, while most 

mild to moderate cases show normal luteal phase lengths. A normal 

luteal phase length doesn't rule out significant dysfunction [75]. 

Schliep et al. divided LPD patients with progesterone ≤10 ng/mL 

into two groups: clinical LPD (short luteal phase <10 days) and 

biochemical LPD (progesterone ≤5 ng/mL), suggesting different 

underlying mechanisms [76]. Matsumoto classified BBT curves 

into seven types, while Kunimoto combined BBT, urinary 

progesterone, and endometrial images for seven LPD types. 

Building on Matsumoto's system, Taneda introduced the High-

Temperature Phase Scoring (HPS), Igarashi proposed the High-

Temperature Phase Area Index (PLI), and Iizuka developed the 

Implantation Phase Area Index (PNI) to predict pregnancy 

outcomes [77]. 

BBT can be helpful in predicting pregnancy outcomes, but it has 

its limitations. Women who conceive easily typically have stable 

BBT patterns during the luteal phase, while those with fertility 

issues or emotional instability often show irregular fluctuations. No 

significant differences are found in early BBT charts between 

women who experience early miscarriages and those who have 

normal deliveries [50]. BBT curves do not reflect the severity of 

threatened miscarriage or indicate unruptured ectopic pregnancies 

[36]. BBT is a convenient tool for early pregnancy diagnosis. A 

luteal-phase high-temperature period exceeding 16 days suggests 

pregnancy with 97% accuracy [88]. However, immunoassays for 

urinary HCG offer greater sensitivity and convenience. For patients 

with irregular cycles, combining BBT with HCG measurements 

allows for more timely and accurate early pregnancy and 

biochemical pregnancy diagnoses [79]. 

3) Assessing Ovarian Reserve Function 

Shorter menstrual cycles are linked to reduced ovarian reserve due 

to hormonal dysfunction in the early follicular phase, leading to 

LPD [78]. After age 36, the high-temperature phase on BBT chart 

begins to shorten, with a more significant decrease in high-

temperature phases by age 46. The BBT pattern shows a shortened 

follicular low-temperature phase (8–10 days), earlier ovulation, 

and a slower rise and fall during the luteal phase, resulting in a 

mountain-like shape. For example, in a study of 110 women 

undergoing artificial insemination on days 8–10 of their menstrual 

cycles, none with biphasic BBT patterns achieved pregnancy 

[50,54,79]. 

Researchers suggest that menstrual cycle length may serve as an 

indicator of oocyte quality and ovarian reserve function in older 

women [78,83]. Hormonal dysfunction in the early follicular 

phase, including lower LH peaks and reduced oocyte quality, can 

lead to LPD, along with abnormal progesterone and estradiol 

secretion during the luteal phase. However, after adjusting for age, 

isolated ovarian reserve decline has been found unrelated to LPD 

[80–82].  

4) Assisting in the Diagnosis of Endometriosis 
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 A delayed decline in BBT during the three days prior to 

menstruation could serve as a preliminary screening method for 

Endometriosis (EM) [87]. EM is a chronic, estrogen-dependent 

inflammatory gynecological disease. In the 1980s, researchers 

proposed that pelvic EM is associated with a delayed decline in 

follicular-phase BBT after menstruation [84]. Studies found that 

two-thirds of EM patients exhibited this phenomenon, compared to 

only 1/16 of controls. Additionally, significant temperature 

differences were observed in the three days before menstruation 

between EM and non-EM patients. Although the mechanism 

remains unclear, elevated temperature in endometriosis is thought 

to indicate an enhanced inflammatory response, characterized by 

increased activity of pelvic macrophages and higher levels of 

lymphokines, interleukins, and prostaglandins [85]. Research 

indicates that EM patients exhibit elevated ovarian vein 

progesterone levels in the early follicular phase, suggesting 

inadequate luteolysis and extended luteal function into the next 

cycle. This delayed BBT drop may reflect progesterone's effect on 

the hypothalamic thermoregulatory center [86]. 

5) Diagnosing Ovulatory Dysfunction 

Abnormal uterine bleeding is a common issue often linked to 

ovulatory dysfunction, such as infrequent ovulation, anovulation, 

or luteal insufficiency. BBT monitoring provides a non-invasive, 

straightforward method to assess menstrual cycle dynamics and the 

relationship between bleeding and menstruation. When combined 

with other diagnostic tools, BBT helps identify the specific type 

and underlying cause of the bleeding [88]. 

Conclusion: 

In conclusion, BBT monitoring remains a critical tool in 

gynecological endocrinology for predicting ovulation, supporting 

conception, and evaluating the efficacy of treatment such as 

ovulation-inducing drugs and natural therapies. The biphasic 

nature of BBT provides valuable insights into menstrual cycle 

patterns and reproductive health. The advent of wearable devices, 

including bracelets, rings, armbands, ear-based sensors, waist 

monitors, has revolutionized this process by enabling automatic, 

continuous temperature tracking during nighttime, showing the 

most scientific promise in reflecting biphasic BBT and accurately 

predicting ovulation. These user-friendly devices, integrated with 

AI, are anticipated to transform BBT monitoring into a simple, 

accurate, real-time, non-invasive, and cost-effective diagnostic 

method in reproductive endocrinology.  
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