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Abstract: 
Central control of metabolism means intricate control and coordination of 

biochemical and molecular pathways that occurs within an organism to 

maintain the overall well-being of an organism. Several components are 

involved in this. (i) Hypothalamus can sense nutrient levels, hormones and 

signals related to hunger and satiety. It regulates appetite, energy 

expenditure and body temperature. (ii) Hormones like insulin, glucagon 

regulates glucose metabolism, energy storage and utilization of lipids and 

carbohydrates. Leptins produced by adipocytes signals brain to reduce 

appetite when fat stores are surplus while ghrelin secreted by stomach 

stimulates hunger. Adipose tissue stores energy in form of triglycerides and 

its metabolism releases energy in form of fatty acid when required. 

Circadian rhythms like sleep-wake cycle, hormone secretion, body 

temperature all are controlled by suprachiasmatic nucleus in brain. In this 

review article we have discussed how different factors like hormones, 

biomolecules, stress, circadian rhythms affect neurons energy homeostasis.  

Keywords: Agrp; POMC; arcuate nucleus; glucose; lipids; ROS; circadian 

rhythms; hormones; suprachiasmatic nucleus; leptin; ghrelin 

 

Introduction: 
 

All the systemic metabolic activities of brain are controlled by sympathetic 

and parasympathetic neurons [1]. The neurons of arcuate nucleus of 

hypothalamus were the principal commanding centre to regulate different 

types of metabolism. The other linked controlling centres to it were 

ventromedial, lateral, dorsomedial and paraventricular nucleus of 

hypothalamus. Brain stem nucleus like dorsal motor vagal nucleus, 

parabrachial and solitary tract nucleus, regulate feeding, blood pressure and 

gastric secretion [2]. The neurons energy expenditure is very high when 

compared with somatic cells [3, 4]. Brain requires 20% of whole-body 

oxygen consumption. The energy consumption increases with neurons 

number and the total energy expenditure in signaling/resting state is 

constant [5, 6]. The arcuate nucleus has two distinct neurons 

AgRP/Neuropeptide Y and POMC [7]. AgRP/NPY neurons work along 

with ghrelin in energy homeostasis [8]. The hypothalamic melanocortin 

system also regulates energy expenditure and food intake by sensing the 

metabolic status and accordingly taking action on the information received 

by the peripheral and CNS [9]. The POMC neurons originate from 

melanocortin and their ablation/ leptin deficiency causes obesity [10].The 

food intake and energy expenditure are controlled by both endocrine and 

neuroendocrine systems [11]. The energy expenditure may be due to muscle 

overactivity/ shivering or glucose/lipids oxidation in brown adipose tissue. 

Living beings’ energy is ATP produced by oxidative phosphorylation. The 

CNS senses energy status by the ratio of [ATP]/[ADP] [Pi] where Pi 

informs about energy status and value is between 104-105 M-1 by AMPK 

and any deviation may lead to pathophysiological conditions.  

 

 

Undifferentiated 

 

 

Undifferentiated cells can bear the cost of energy 
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Undifferentiated cells can bear the cost of energy changes as each 

cell is independent whereas for differentiated cell little energy 

metabolic deviation will make whole organism to suffer [12]. 

Earlier life-threatening diseases means stroke/ haemorrhage, 

cancer, organ failures but now under this comes so many diseases 

that are not very rare like obesity, type 2 diabetes and many more. 

It was estimated worldwide that about 17% of population is obese 

and 10% diabetic and obesity is not alone it is always associated 

with hypertension, type 2 diabetes and stroke [13-15]. Chronic 

dysregulation in glucose homeostasis leads to obesity/ impairments 

in memory, cognition due to leptin-insulin insensitivity/lack [16]. 

High glucose inhibits food intake and low increases [17]. Leptin 

involves two pathways WNT and PI3K to target brain during 

glucose lowering or energy expenditure [18]. Excess lipids and 

ROS generated from fatty acid metabolism in brain have been the 

cause of hypothalamic inflammation and metabolic dysfunction. 

Mutation in any of the receptors of insulin, ghrelin, GH, or 

unrepaired BER all impact the metabolism. In this review article 

we have discussed how different factors like hormones, 

biomolecules, stress, circadian rhythms affect neurons energy 

homeostasis in brain.    

 

Energy metabolism Control 

Estrogens: 

 

Estrogens/17β estradiol regulates energy homeostasis in brain [19]. 

Being anti-inflammatory has direct action on verbal memory or 

cognition [20]. High estrogens prevent obesity and mutation/ 

deletion in estrogenic receptor α (Esr 1 gene) in brain is associated 

with obesity, hypometabolism and hyperphagia [21]. These 

estrogenic receptors are maximally found in ventromedial nucleus 

of hypothalamus aiding in energy metabolism by glucose 

regulation and thermogenesis [22, 23].  Decreased levels promote 

binge eating causing obesity and inactivating stimulation of brown 

adipose tissue (BAT) thermogenesis [24]. In women’s decreased 

level of it is associated with mood lowering/ depression which may 

be due to decreased amino acid tryptophan [25]. So, it can be said 

that decreased tryptophan results in decreased estrogen causing 

depression. Estrogens also helps in transcription of DNA base 

excision repair and translocation of BER (base excision repair) 

enzymes between subcellular compartments in brain [26]. The 

actions of anorexigenic and orexigenic hormones leptin and ghrelin 

on hypothalamus in maintaining energy metabolism is different. 

The leptin increases energy expenditure/supress food intake [27, 

28] and decreased leptin sensitivity /genetic deficiency of leptin 

receptors in brain is associated with low levels of estrogen 

promoting hyperphagia and obesity [29].While ghrelin is known to 

decrease energy and promotes feeding. AgRP neurons expressed in 

the neurons of hypothalamic arcuate nucleus are inhibited by leptin 

and insulin and stimulated by ghrelin [30]. Increased 17 β estradiol 

on the Pro opio melanocortico neurons (POMC) and AgRP neurons 

in the arcuate nucleus of hypothalamus (ARC) regulates energy 

balance in opposite way. POMC neurons stimulates α melanocyte 

hormone receptors which supresses weight gain and enhanced 

energy expenditure [31, 32] whereas AgRP commonly known as 

food driving increases weight and foraging behaviour. Decreased 

17β estradiol can be corelated to decreased POMC neurons and 

increased feeding behaviour. The release of neuropeptide Y (NPY) 

by AgRP neurons promotes weight gain and feeding [33].  17 β 

estradiol decreases the effect of NPY/AgRP resulting in suppressed 

feeding [34]. Inhibition of serotonin signalling in brain or blockage 

of estrogen receptors α increases appetite and weight gain [35].  

Synergistic effects of cholecystokinin and 17β estradiol triggers 

anorexigenic behaviour by increasing the expression of c-fos where 

c-fos is a marker for neuronal activation [36].   

 

Growth hormone (GH): 

 

GH are secreted by the somatotropic cells of anterior pituitary 

gland, instructs brain to balance metabolism to maintain energy 

homeostasis [37]. They exhibit pulsatile secretion pattern and are 

regulated by hypophysiotropic hypothalamic neurons and these 

neurons express either growth hormone releasing hormone 

(GHRH), or somatostatin (SST). The SST inhibit GH secretion and 

GHRH stimulate it [38]. Hormone Ghrelin triggers its release by 

inducing GH secretagogue receptor [39]. Studies have shown that 

GH therapy or replacements enhances memory functions in its 

deficiency/ loss of memory and learning in over secretion [40, 41]. 

GH in brain show orexigenic effect resulting in hyperphagia and 

obesity mediated by NPY and AgRP neurons that stimulate feeding 

[42, 43]. The insulin sensitivity in brain is regulated by GH 

receptor signalling which is the main cause of memory loss or 

retention   or other neuro diseases as over secretion causes insulin 

resistance [44]. The insulin levels towards leptin are affected by 

CNS and ablated GH receptors in leptin receptors expressing cells 

leads to impaired hepatic insulin sensitivity [45, 46]. Defects in GH 

or inactivation of its receptors in leptin expressing cells/SF-1 

neurons leads to hypoglycaemia and impaired counter regulatory 

response [47]. 

 

Glucose: 

 

Ventral hypothalamus of brain contains arcuate nucleus is the main 

centre for regulating all types of metabolism like energy and 

glucose homeostasis etc [48].  Its neuropeptides can stimulate 

various activities like sensory and effector stimulation of neurons/ 

activation to inhibition of hormones secretion to target organs, 

bones formation and remodelling. Its main fuel is glucose and 

when it runs out of fuel, brain functions like cognition, neurons 

sensation all are affected resulting in several types of neuro 

disorders. The insulin independent entry of glucose in brain across 

the blood brain barrier is by transporters GLUT 1 and 3 in 

normoglycemic state and insulin dependent are GLUT4 [49-

51].For the first time in 1950s it was observed that brain can sense 

glucose levels [52].  Glucose inhibitory and excitatory neurons are 

activated sensing glucose levels. In the case of glucose inhibitory 

neurons, there is increased ATP/AMP ratio by Na-K-ATPase or 

opening of chloride channels by adenosine mono phosphate 

activated protein kinase and nitric oxide resulting in 

hyperpolarization in both cases whereas for glucose excitatory 

neurons there is increase of ATP/ADP ratio, closure of potassium 

channels, influx of calcium, depolarization and release of 
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neurotransmitters [53-55]. AgRP and POMC are the two neurons 

regulating energy conservation and expenditure and studies on 

genetic ablation and optogenetic activation have indicated that 

about 40% of AgRP/NPY are inhibitory and POMC are glucose 

excitatory neurons [56, 57]. Non-neuronal cells like astrocytes 

(glial cells) maximally present at the interface between blood 

vessels and neurons have GLUT1 transporters where glucose has 3 

fates. It can be oxidized/ stored as glycogen/ converted to lactate 

by astrocyte neuron shuttle [58].    

 

Ventromedial hypothalamus protects steroidogenic factor 1 

neurons (SF-1) which regulates thermogenesis, adiposity, and 

energy balance. The inhibition of SF-1 neurons will cause impaired 

or no recovery from insulin induced hypoglycemia due to 

decreased secretion of hormones glucagon, corticosterone and 

reduced hepatic glucose production [59]. It has been proved that 

hypothalamic regions and brain stem in association with peripheral 

organs are involved in glucose metabolism [60]. Studies have also 

proved that type 2 diabetes and Alzheimer are interrelated. 

Increasing age there is glucose intolerance and insulin resistance 

/insensitivity. Impaired insulin secretion overrules the positive 

effects of insulin on memory and hyperglycemia resulting in 

glucose entry in brain. Excess glucose in brain is metabolized by 

polyol pathway increasing sorbitol and inositol [61, 62]. The 

increased sorbitol reduces taurine thus affecting cellular osmotic 

balance. Though glucose is main fuel for basal energy, action 

potentials, neurotransmitters synthesis [63] it can use other 

molecules like lactate in exercise, ketone bodies in starvation [64, 

65].  

 

Lipids: 

 

Astrocytes supply ketone bodies to neurons when energy is derived 

from lipids in low glucose intake [66]. During fasting there is 

increase in ghrelin and accumulation of stearoyl and palmitoyl 

CoAs in brain which are the leading cause for leptin, insulin 

insensitivity and hypothalamic inflammation [67-69]. AgRP 

neurons are stimulated during this period which utilize the extra 

lipids thus protecting the neurons from lipids toxicity and reducing 

adiposity/ initiates feeding [70]. Though some studies say that fatty 

acids have direct and indirect effect on neurons. 

 

Reactive oxygen species (ROS): In fasting’s beta oxidation takes 

place as an energy source but it also results in increased ROS 

causing hypothalamic oxidative stress [71]. 

 

Malonyl CoA: an enzyme of Fatty acid metabolism has played 

major role in energy homeostasis in CNS as fatty acid synthesis 

takes place in surplus energy [72, 73]. Inhibition of Fatty acid 

synthase in CNS, increases malonyl CoA and decreases food intake 

resulting in lean phenotype. Overexpression of malonyl CoA 

decarboxylase removes malonyl CoA resulting in increased food 

intake and obesity [74].    

 

Bone regulator: 

 

 AP1 antagonism studies proved that both neurons (AgRP and 

POMC) results in glucose consumption, bone formation and 

reduced adiposity [75]. Though both neurons act as positive 

regulator of bone formation, AgRP neurons supresses bone 

resorption whereas POMC neurons increases it.  NPY neurons acts 

as negative regulator of bone formation [76]. Leptin a known 

adipokine of lipid metabolism is also involved in bone remodelling.  

It negatively affects bone density via serotonergic and sympathetic 

nervous systems and positively via a neurotransmitter CART 

present in POMC and suppression of osteoclastogenesis [77-79]. 

Thus, it can be said that energy depends on glucose metabolism 

and bone homeostasis or vice versa bone remodelling can affect 

energy end glucose levels [80, 81]. Galanin an inhibitory 

neuropeptide regulates anterior and posterior pituitary hormones 

which in turn regulates energy and bone homeostasis and its 

activation depends on different types of food consumption, drugs 

and alcoholic beverages [82].  The galanin activation cause 

increase of neurohormones oxytocin, arginine, vasopressin and 

thyrotropin releasing hormone. Reduced oxytocin leads to obesity 

and osteopenia [83, 84]. 

 

Circadian synchronization: 

 

 Metabolic homeostasis and disrupted sleep/wake or feeding 

/fasting cycle influences circadian rhythms and transcription by 

interaction with tissue specific metabolic and inflammatory factors 

like p65, SREPB, PPARα [85,86]. Discovery of immediate early 

genes in neurons acts as a link between environmental signals and 

neuronal transcriptions [87]. It can control protein accumulation by 

regulating translation of processed mRNAs [88]. Studies have 

proved that release of neurotransmitters like serotonin, dopamine, 

somatostatin depends on circadian cycles and they respond 

dynamically inducing transcriptional reprogramming in nutrient 

changing state across sleep/wake cycle or time of day [89, 90]. The 

central pacemaker clock in the suprachiasmatic nucleus (SCN) 

regulates physiology and behavior and its ablation results in loss of 

rhythm in drinking water and locomotor activity [91]. Vasoactive 

intestinal peptide active neurons in SCN controls diurnal amplitude 

in locomotor activity in healthy and Alzheimer patients. Light 

exposure to SCN in humans and other species during early evening 

results in delay in walking and sleep onset on the following day 

[92]. This can be due to rhythmic variations in post synaptic 

signaling pathways across the light dark cycle and combination of 

inhibitory-activating signals of glutamate, GABA and PACAP or 

transmitter/ peptide time scales [93, 94]. The wake promoting 

orexin expressing neurons in lateral hypothalamic SCN regulates 

sleep/wake state and shifts across sleep stages [95]. In wakefulness, 

increased metabolism and energy use by neurons results in 

accumulation of toxic waste products amyloid and tau proteins 

[96]. The removal of these waste products from CNS via BBB is 

thought to be mediated by sleep/wake state and circadian which 

rely on glial cells [97]. The sleep dependent glymphatic system 

controls the efflux of metabolites adenosine and toxic proteins like 

amyloid β and lactate from the brain [98]. AgRP neurons promote 

wakefulness and POMC sleep [99]. Insulin secretion is regulated 

by melatonin and melatonin secretion is controlled by SCN. Thus, 
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it can be said that melatonin mediates glucose homeostasis [100, 

101].  

 

Conclusion: 
 

We have seen how various components interact to regulate key 

metabolic processes including energy intake/expenditure, glucose 

homeostasis, lipids metabolism, circadian rhythms. These 

pathways are important for proper functioning of neurons as 

neurons energy demand is very high. Dysfunction in any of these 

pathways in brain would give rise to different types of diseases like 

diabetes, obesity, hormonal imbalances, sleep disturbances and 

metabolic syndromes. The study will be important for developing 

insights into neurological diseases and potential therapeutic 

interventions.  

 

Figure 1: How different neurons maintain energy homeostasis  

 
+: increase; -: decrease 
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