

Open Access Research Article

Effect of trastuzumab on disease course in her2neu positive breast cancer in a tertiary care hospital in Pakistan.

Hira Khan Afridi ¹, Annam Zahid ², Navaira Ali ^{2*}, Naila Zahid ³ and Rufina Soomro ³ Liaquat National Hospital and Medical College, Karachi, Pakistan.

Article Info

Received: November 08, 2022 Accepted: December 02, 2022 Published: January 10, 2023

*Corresponding author: Navaira Ali, Liaquat National Hospital and Medical College, Karachi, Pakistan.

Citation: Hira Khan Afridi, Annam Zahid, Navaira Ali, Naila Zahid and Rufina Soomro. (2023) "Effect of trastuzumab on disease course in her2neu positive breast cancer in a tertiary care hospital in Pakistan", J Oncology and Cancer Screening, 5(1); DOI: http://doi.org/01.2023/1.1064.

Copyright: © 2023 Hira Khan Afridi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract:

Trastuzumab is a recombinant monoclonal antibody developed to target the Human epidermal growth factor receptor 2 (also known as Her2 neu receptor), it inhibits the proliferation of tumor cells that overexpress Her2 receptors. According to International data and trial results, addition of trastuzumab to chemotherapy for Her2 neu positive breast cancer has led to improvement in prognosis of Her2 positive breast cancer patients. No national data exists of effects of trastuzumab use in Her2 positive breast cancer patients in our patient population, which could tell whether our patients respond to trastuzumab as well or not. Hence, we analyzed the available data in a tertiary care hospital in Karachi where a large number of breast cancer patients are treated.

Methods:

We retrospectively analyzed data of Her2 neu positive breast cancer patients from 2004 till 2017, in Liaquat National Hospital, who had early stage or locally advanced breast cancer and assessed the 2 year and 5 year DFS (Disease Free Survival) and OS (Overall Survival) of patients who received trastuzumab along with chemotherapy and who received chemotherapy alone. As a new Her2 targeted drug was approved and is being used in patients along with Trastuzumab ,thus patients till 2017 who had received single Her2 targeted drugs were included.

Results:

Total 211 records were reviewed and out of them 124 (58.8%) received trastuzumab therapy and remaining were treated with chemotherapy only. The median age of patients was 50 (IQR=42-56) years. The DFS rate at two years between trastuzumab group and the observation group was 83.1% and 72.4% which was not statistically significant (p=0.081).

Five year DFS rate among patients treated with and without trastuzumab was 79.8% and 70.1% respectively without any significant difference (p=0.194). 23 patients succumbed to the illness within two years of diagnosis and 40 succumbed to the illness within 5 years. Two year OS between trastuzumab and the control group was 92.7% and 83.9% respectively (p=0.064). Five year survival among patients receiving trastuzumab was 87.1% and ones who didn't receive trastuzumab therapy was 72.4% (p=0.048) and this was found to be statistically significant.

Conclusion:

So our data shows that in our population there was a difference in DFS and OS with the use of trastuzumab along with chemotherapy in an adjuvant/neoadjuvant setting, and it was found statistically significant in terms of 5 year OS of Her2 positive breast cancer patients.

Keywords: trastuzumab,her 2 neu; neo/adjuvant chemotherapy; breast cancer.

Abbreviations:

- 1. DFS: DISEASE FREE SURVIVAL
- 2. OS: OVERALL SURVIVAL
- 3. ER: ESTROGEN RECEPTOR'

4.PR: PROGESTERONE RECEPTOR 5.Her2: HER 2 NEU RECEPTOR.

Introduction:

Breast cancer is a disease which is not treated uniformly as it is categorized based on its tissue biomarkers and thus treated differently according to the molecular type of breast cancer [1]. About 70 % of breast cancer is ER (estrogen receptor) positive ,and about 15 to 20 % are Her2 neu positive(HEREAFTER referred as Her2) [2]. Her2 belongs to human epidermal growth factor receptor genes, called ERBB2. The Her2 proto-oncogene is localized to chromosome 17q and encodes a transmembrane tyrosine kinase receptor called p185 Her2 neu. Overexpression of Her2 mediates unregulated cell proliferation, invasion and metastases [3] in cancerous cells thus Her2 positive breast cancer had poor prognosis [4], so much so that patients with metastatic Her2 positive pts had median survival of only 0.7 years [5]. This therapy [18]. So our aim was to primarily compare the results of was because it was said that Her2 overexpression/amplification 1 year of Trastuzumab with no Trastuzumab use in the population can lead to lack or lower levels of ER expression, relative under treatment for Her2 positive breast cancer at our tertiary care resistance to endocrine therapy and higher risk of recurrence [6,7]. hospital. But that was until Trastuzumab, a recombinant humanized monoclonal antibody targeting Her2 receptors was approved by Methods: the FDA in 1998. Trastuzumab binds to the extracellular domain of Her2 and prevents cleavage of the extracellular domain of We retrospectively analyzed data from our patients files in the HER-2 and thereby activation of the receptor; blocks the Medical Oncology department, Liaquat National Hospital which dimerization of HER-2; mediates activation of antibodydependent cell-mediated cytotoxicity, resulting in tumor cell year 2004 upto year 2017 was included. The study approval was lysis; and promotes HER-2 internalization(4). It first got approved taken by the institution's ethical review committee. It was not in metastatic setting as a single agent and showed good clinical response whether used weekly or 3 weekly [8,9] and with chemotherapy as well and showed longer time to disease progression, a higher rate of objective response, a longer duration of response and longer survival [10]. Subsequent phase III trials proved that trastuzumab reduces recurrence rate by about 50 % in early breast cancer patients [11]. There are 5 randomized trials regarding Trastuzumab that demonstrate the addition of Trastuzumab to chemotherapy as well as adjuvant treatment for Her 2 neu-overexpressing breast cancer. The HERA trial, a large randomized phase III trial examined both, 24-month and 12month, durations of trastuzumab treatment compared with a no trastuzumab control group and reported a benefit of DFS at 2 years of 8.4% (95% CI 2·1–14·8) for the 12-month treatment group compared with the no trastuzumab group [12]. The joint analysis of the US studies (NSABP-B31 and NCCTG-N9831) showed a similar hazard ratio (HR) for 12-month trastuzumab and a control group that did not receive this drug, with a benefit of disease-free survival of 11.8% at 3 years [13]. In 2006 a smaller study, FinHer [14] investigated giving 9-weeks of trastuzumab with chemotherapy versus chemotherapy alone; it showed very similar results with a benefit in disease-free survival of 11.7% at 3 years for 9-week trastuzumab. This result prompted a substantial interest in curtailing Trastuzumab to 9 weeks as this might be cost effective in developing countries where patients have financial constraints. But as it was a small trial thus its results are not validated.

alone without chemotherapy can be effective. The optimal postmenopausal patients were given Aromatase Inhibitors. chemotherapy backbone for trastuzumab-based adjuvant Patients were categorized into two groups, one who received

trials received sequential anthracyclines and taxane-based treatment, with concurrent use of trastuzumab during taxane treatment. The results from BCIRG 006 suggest that the nonanthracycline trastuzumab, docetaxel, and carboplatin (TCH) regimen is superior to chemotherapy given without trastuzumab. TCH is an important treatment option, particularly in patients with contraindications to anthracycline-based treatment, corroborated by the 10-year follow-up of the BCIRG 006 study that showed equivalent DFS and OS in the two trastuzumab-containing arms but with lower risk of cardiac adverse events and leukemia in the non-anthracycline TCH arm [16]. Trastuzumab is active when delivered sequentially after chemotherapy, as done in the HERA trial [12], or concurrently with chemotherapy, as done in the NSABP B-31/North Central Cancer Treatment Group [NCCTG]N9831[13] and Breast Cancer International Research Group [BCIRG] trials [17]. However, it is seen that concurrent Trastuzumab yields superior results as compared to sequential

is a tertiary care center of Karachi, Pakistan. Data collected from funded by any sponsor.

Patients were eligible if they were of age 18 years or older, diagnosed with primary invasive early or locally advanced breast cancer, and were found to have Her 2 neu overexpressed or amplified breast cancer [19]. A result on immunohistochemical analysis (IHC) of 3+ in a range from 0 to 3+ with higher values indicating increased overexpression, was required for confirmation of the status of tumors and/or a positive result on fluorescence in situ hybridization (FISH) for HER2 amplification was required for tumors that were assessed IHC 2+.

All patients had clear indications for treatment and provided written informed consent. Patients were excluded if they had Her2 negative disease, or had metastatic breast cancer or any other concurrent malignancy along with breast cancer.

Patients received chemotherapy (neo-)adjuvant as per the requirements according to their stage of disease, which consisted of taxanes and/or anthracyclines. For patients receiving trastuzumab with taxanes, if taxanes were administered in a weekly manner then trastuzumab was given at a loading dose of 4mg/kg and subsequently 2mg/kg and then on completion of chemotherapy the trastuzumab was switched administered 3-weekly at 6mg/kg. If taxanes were given in 3weekly doses, trastuzumab was administered at an 8mg/kg loading dose followed by 6mg/kg every 3 weeks. Standard was to give it for 12 months in total which was about 17 cycles. Patients underwent definitive surgery and/or radiotherapy, if applicable. Patients who were hormone positive received hormonal therapy All the adjuvant trials incorporated chemotherapy along with trastuzumab after completion of their chemotherapy. trastuzumab, there is no data to confirm whether trastuzumab Mostly premenopausal patients were given Tamoxifen and

treatment is uncertain [15]. Most patients treated on the clinical trastuzumab along with chemotherapy and the other was the one

who did not receive trastuzumab and received chemotherapy total of 40 mortalities within five years, out of which 16 two groups were well balanced.

Outcomes:

Primary endpoint was 2-year and 5-year overall survival and it included death from any cause, and was calculated from the completion of chemotherapy to the event when it occurred.

Secondary endpoint was 2-year and 5-year Disease free survival (DFS) with DFS events including loco-regional or distant recurrence of breast cancer, development of contralateral breast cancer and was calculated from the end of chemotherapy completion to the event when it occurred.

Results:

Study Population:

Total 211 records for breast cancer patients were reviewed. The age range for patients is 25-80 years with median (IQR) age of 50 (42-56) years. Most of the patients presented with stage 3 tumor (n=130, 61.6%) while remaining presented with stage 2 (n=75, 35.5%) and stage 1 (n=6, 2.8%)(TABLE 1) Majority of the study participants had tumor size of T2 (82, 38.9%) and T3 (n=85, 40.3%) whereas few also presented with T1 (10, 4.7%) and T4 (34, 16.1%). 75(35.5%) patients had involvement of 1 to 3 lymph nodes while nearly quarter had no involvement (n=56, 26.5%) and less than 20% presented with 4 to 9 lymph nodes(n=42, 19.9%) or more than 10 lymph nodes (35, 16.6%) involvement. Estrogen and progesterone receptor were positive among more than half of the participants (n=111, 52.6%). Almost half of the patients treated with neoadjuvant (105, 49.8%) and other half with adjuvant therapy (n=105, 49.8%) and only single patient didn't receive chemotherapy. Majority of the patients received radiation therapy (n=167, 79.1%) either because of breast conservation surgery being done or because of size of tumor being more than 5 cm or lymph node positive disease. Nearly all of patients were managed with surgery (n=206, 97.6%). About half of the study participants didn't require hormonal therapy (n=104, 49.3%) because of hormone receptor negative disease and remaining received tamoxifen (n=62, 29.4%) and aromatase inhibitors (n=45, 21.3%). More than half of the patients received trastuzumab therapy for a year (n=124, 58.8%)(TABLE1)

A total of 27 patients experienced two year disease recurrence event and out of them, 13(10.4%) belonged to the trastuzumab group and 14(16.0%) belonged to the chemotherapy only group (Table 2). Within 5 years, disease recurrence events were observed in 45 patients. 22(17.7%) belonged to trastuzumab group and 24(26.4%) to chemotherapy only group.

Two year disease free survival rate among patients receiving trastuzumab therapy was higher than those who didn't receive it (83.1% vs. 72.4%) but without any statistical significance (p=0.081)(TABLE 3).

There was no statistical significant difference between the two different groups for 5 year DFS (79.8% vs. 70.1%, p=0.194). 23 patients expired within two years after starting their treatment. 92.7% patients survived in trastuzumab and 83.9% in the chemotherapy only group. The insignificant difference was observed among the two study groups (p=0.064). There were a

alone. Table 1 lists baseline characteristics of the patients, tumor mortalities were in the trastuzumab group while 24 mortalities in stage and primary treatment. The baseline characteristics of the chemotherapy alone group. Five year overall survival for trastuzumab and control group was 87.1% and 72.4% respectively. There was a statistically significant difference seen in 5 year Overall Survival(OS) rates between both the studied groups(p= 0.048)which proved that our population shows the benefit of using Trastuzumab along with chemotherapy in Her2 positive breast cancer patients(TABLE 3)

	Trastuzumab group	Control group n(%)		
	n(%)			
Age	11(70)	11(70)		
<40 years	18(14.5)	20(23)		
40-49 years	34(27.4)	23(26.4)		
50-59 years	45(36.3)	34(39.1)		
60 years and above	27(21.8)	10(11.5)		
Stage at diagnosis				
Stage 1	6(4.8)	0(0)		
Stage 2	39(31.5)	36(41.4)		
Stage 3	79(63.7)	51(58.6)		
Progesterone/Estrogen Receptor				
Negative	58(46.8)	42(48.3)		
Positive	66(53.2)	45(51.7)		
Tumor size				
T1	10(8.1)	0(0)		
T2	47(37.9)	35(40.2)		
T3	44(35.5)	41(47.1)		
T4	23(18.5)	11(12.6)		
Lymphonodes				
N0	32(25.8)	24(27.6)		
N1	40(32.3)	35(40.2)		
N2	28(22.6)	14(16.1)		
N3	22(17.7)	13(14.9)		
1mic	2(1.6)	1(1.1)		
Chemotherapy				
Anthracycline	114(91.9)	83(95.4)		
Non Anthracycline	10(8.1)	3(3.4)		
Not received	0(0)	1(1.1)		
Type of chemotherapy				
Adjuvant	65(52.4)	40(46)		
Neoadjuvant	59(47.6)	46(52.9)		
Not received	0(0)	1(1.1)		
Radiation therapy				
Done	103(83.1)	64(73.6)		
Not done	21(16.9)	23(26.4)		
Surgery				
Done	121(97.6)	85(97.7)		
Not done	3(2.4)	2(2.3)		
Hormonal therapy				
Not needed	59(47.6)	45(51.7)		
Tamoxifen	32(25.8)	30(34.5)		
Aromatase inhibitors	33(26.6)	12(13.8)		

Table 1: Baseline characteristics of the patients, tumors and primary treatments (intention to treat groups)

Aditum Publishing -www.aditum.org Page 3 of 7

	Events at 2 ye	ars	Events at 5 years			
	Treatment	Control	Treatment	Control		
Event Details	n(%)	n(%)	n(%)	n(%)		
Total Relapse	13(10.4)	14(16.0)	22(17.7)	23(26.4)		
Brain	5(11.1)	1(4)	8(6.4)	2(2.3)		
Visceral	8(17.8)	13(52)	11(8.9)	19(21.8)		
Bone	0(0)	0(0)	1(0.8)	1(1.1)		
Local	0(0)	0(0)	2(1.6)	1(1.1)		
Mortalities	9(20)	14(56)	16(12.9)	24(27.6)		

Survival time	Treatment (%)	Control (%)	p- value
2 years disease free survival	83.1	72.4	0.081
5 years disease free survival	79.8	70.1	0.194
2 years overall survival	92.7	83.9	0.064
5 years overall survival	87.1	72.4	0.048

Table 3: Survival rates among trastuzumab group and control group Log Rank Test is applied.

*Significant at p≤0.05

Table 2: Details of clinical events

Factors	Disease free sur	Disease free survival (%)						Overall survival (%)					
	2 year DFS			5 year DFS			2 year OS			5 year OS			
	Trastuzumab	Contro l	p-value	Trastuzu mab	Contr ol	p-value	Trastuzu mab	Control	p-value	Trast uzum ab	Control	p-value	
Stage at diagnosis													
Stage 1	100	-	-	100	-	-	100	-	-	100	-	-	
Stage 2	89.7	80.6	0.329	87.2	77.8	0.444	94.9	88.9	0.415	87.2	77.8	0.583	
Stage 3	78.5	66.7	0.134	74.7	64.7	0.263	91.1	80.4	0.084	86.1	68.6	0.040*	
Tumor size													
T1	90	-	-	90	-	-	90	-		90	-	-	
T2	91.5	94.3	0.623	91.5	94.3	0.623	93.6	94.3	0.854	91.5	94.3	0.597	
Т3	79.5	63.4	0.141	72.7	61	0.432	88.6	80.5	0.353	81.8	65.9	0.293	
T4	69.6	36.4	0.055	65.2	27.3	0.065	100	63.6	0.003*	87	27.3	0.005*	
Lymph Nodes													
N0	90.6	66.7	0.037*	87.5	66.7	0.095	96.9	79.2	0.049*	90.6	66.7	0.065	
N1	90	68.6	0.029*	87.5	62.9	0.037*	97.5	88.6	0.141	92.5	68.6	0.069	
N2	82.1	78.6	0.804	82.1	78.6	0.804	92.9	78.6	0.195	85.7	78.6	0.576	
N3	63.6	84.6	0.251	54.5	84.6	0.117	81.8	84.6	0.775	77.3	84.6	0.569	
1mic	50	100	0.480	50	100	0.480	50	100	0.480	50	100	0.480	
Type of chemotherapy	,												
Adjuvant	89.2	87.5	0.852	87.7	87.5	0.918	95.4	92.5	0.589	90.8	87.5	0.811	
Neoadjuvant	76.3	58.7	0.057	71.2	54.3	0.051	76.1	64.3	0.077	83.1	58.7	0.049*	
Hormonal therapy													
Not needed	78	64.4	0.169	76.3	64.4	0.267	86.4	77.8	0.338	81.4	66.7	0.334	
Tamoxifen	90.6	80	0.238	84.4	76.7	0.547	100	90	0.072	90.6	80	0.321	
Aromatase inhibitors	84.8	83.3	0.939	81.8	75	0.749	97	91.7	0.450	93.9	75	0.103	

Table 4: Two and five years disease free and overall survival rate in different factors with respect to treatment (with p-value)

Chi-square test is applied I Fisher-Exact test is reported

*Significant at P<0.05

Only subgroups that had statistically significant p value have been included in this table.

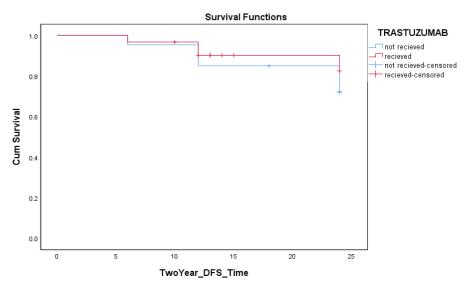


Figure 1: Two-year disease free survival among patients received trastuzumab for a year and control group

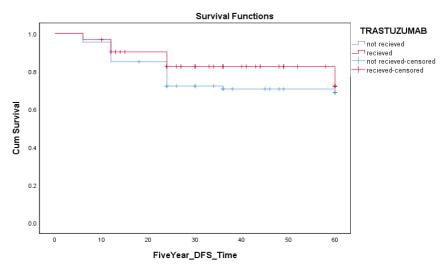


Figure 2: Five-year disease free survival among patients received and did not receive trastuzumab therapy

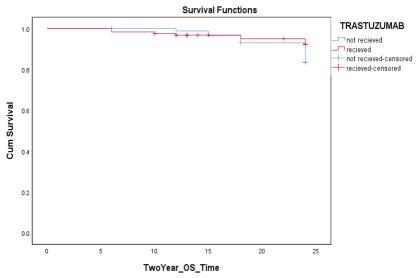


Figure 3: Two year overall survival among patients treated with and without trastuzumab therapy

Aditum Publishing –www.aditum.org
Page 5 of 7

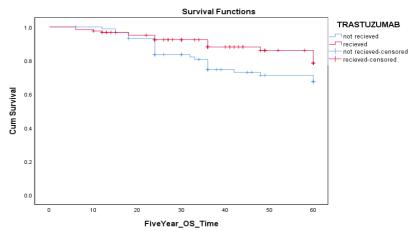


Figure 4: Five year overall survival among patients who received and didn't receive trastuzumab therapy

Discussion:

In the past, Her 2 positive breast cancer connoted aggressive In our population, patients with hormone negative breast disease disease with increased risk of recurrence and death. Understanding the molecular pathways(10) tied to Her2 receptors led to generating targeted agents like trastuzumab which has improved prognosis of Her2 positive breast disease. As trastuzumab showed its efficacy in metastatic carcinoma of the breast, it also proved its mettle in adjuvant settings, in all randomized trials. Due to limited resources, it was quite difficult to incorporate Trastuzumab in our practice in developing countries. Thus, very limited data is available regarding its use in our population. We retrospectively analyzed data of our patients and compared the difference in populations treated with trastuzumab and the ones who did not receive it.

We kept a minimum time of 2 years for follow up for our analysis thus took patients till 2017, but as we had included patients from too. According to our data analysis, the use of trastuzumab for 1 with early breast cancer who are Her2 positive .There was an absolute benefit of 9% in DFS in women who received trastuzumab compared with those who did not receive it. On the other hand, 2 year OS was equivalent and there was not much of a difference, which may be because it was too early to assess survival benefit over a short span of time. Then we also assessed 5 year DFS and OS of the same population, which showed survival benefit of 14.7 percentage points and it had a pvalue=0.048 and was statistically significant among patients receiving trastuzumab. Thus, our query regarding the effect of trastuzumab on our population was answered and our study shows that trastuzumab does benefit patients with HER2-positive breast cancer.

Interestingly, there was no difference in DFS and OS for patients who received trastuzumab with chemotherapy or chemotherapy alone in adjuvant setting (Table 4) Conversely, in patients who had received neoadjuvant chemotherapy and trastuzumab, they Trastuzumab use in our population translated into improvement had 13.9% improvement in 2 year DFS and 17 % improvement in in overall survival and thus targeting Her2 receptors remains the 5 yr DFS. There was slight difference in 2 year OS but it was not cornerstone of treatment in Her2 positive breast cancer patients. statistically significant and later ON ,on 5yr OS analysis, it was found that use of trastuzumab translated into statistically

significant difference.

had lower DFS and OS in comparison to the hormone positive population. This is similar to the results of Hera trial [23]. This means that Hormone negative, Her2 positive disease are more aggressive than triple positive disease.

Patients had difference in their DFS and OS according to Tumor size. It was found that tumors which were more than 5 cm or had skin involvement, showed marked difference in their survivals with use of trastuzumab.(Table 4) This shows the need of neoadjuvant therapy of her 2 positive disease, as it is aggressive and thus giving systemic therapy for tumors that are node positive and more than 2 cm have become a standard [21,22].

In our study during 5 years, 8 patients who received trastuzumab developed brain metastases whereas only 2 patients in nonyear 2004 thus there were some patients with 13 years follow up trastuzumab developed brain metastases. This also reinforces that large molecules such as chemotherapeutics and monoclonal year did improve DFS in our population, when administered in antibodies have decreased concentration of drugs in the brain due addition to standard of care, including chemotherapy in patients to blood brain barrier, as compared with extracranial lesions [25]. Response rate of conventional cytotoxics is around 50% in the brain. Once the blood brain barrier is disrupted secondary to brain metastases then these agents can penetrate and exert their effect. Recent trials also show that controlling systemic disease prolongs brain metastases free survival but does not reduce the overall incidence of brain metastases [24].

> As we did not have a large sample size thus we included both the patients who received neoadjuvant therapy and adjuvant therapy in our study, it would have been better to present the data in two separate studies. We could have given results of DFS and OS according to pathological response as complete pathological response is taken as a surrogate marker for imorved survival but as we did not keep it as our objective thus it was not inferred.

Conclusion:

References:

- Sørlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H,et al. Gene expression patterns of breast carcinomas 16. Perez EA, Suman VJ, Davidson NE, et al. Sequential versus distinguish tumor subclasses with clinical implications, Proc Natl Acad Sci U S A, 2001, 98(19):10869-10874.
- HER-2/neu proto-oncogene in human breast and ovarian cancer. Science. 1989;244:707-712.
- Soni, Abha & Ren, Zhiyong & Hameed, Omar & Chanda, Diptiman & Morgan, Charity & Siegal, Gene & Wei, Shi. (2015). Breast Cancer Subtypes Predispose the Site of Distant Metastases. American journal of clinical pathology. 143. 471-8. 10.1309/AJCPYO5FSV3UPEXS.
- Trastuzumab—Mechanism of action and use in clinical practice. N Engl J Med 2007;357:39 -51.
- SlamonD, et al. Science 1987;235:177-182; KenneckeH, et al. J Clin Oncol2010;28:3271-3277.
- Goldhirsch A, Glick JH, Gelber RD, et al. Meeting 19. highlights: international expert consensus on the primary therapy of early breast cancer 2005. Ann Oncol 2005;16(10):1569–1583.
- Konecny G, Pauletti G, Pegram M, et al. Quantitative receptors in hormone receptor-positive primary breast cancer. J Natl Cancer Inst 2003;95(2):142-153.
- safety of trastuzumab as a single agent in first-line treatment of HER2 overexpressing metastatic breast cancer. J ClinOncol 2002;20:719-26.
- 9. Baselga J, Carbonell X, Castañeda-Soto NJ, et al. Phase II 22. study of efficacy, safety, and pharmacokinetics of trastuzumab monotherapy administered on a 3-weekly schedule. J ClinOncol 2005;23:2162-71
- 10. Slamon DJ, Leyland-Jones B, Shak S, et al. Concurrent administration of anti-HER2 monoclonal antibody and firstline chemotherapy for HER2-overexpressing metastatic 23. breast cancer. A phase III, multinational, randomized controlled trial. N Engl J Med 2001;344:783-92.
- 11. Marty M, Cognetti F, Maraninchi D, et al. Randomized phase II trial of the efficacy and safety of trastuzumab combined 24. Baselga J, Swain SM. CLEOPATRA: a phase III evaluation with docetaxel in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer administered as first-line treatment: the M77001 Study Group. J ClinOncol 2005;23:4265-74.
- 12. 11 years' follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive early breast cancer: final analysis of the Trastuzumab Adjuvant (HERA) trial Prof David Cameron, MD Martine J Piccart-Gebhart, PhD Richard D Gelber, PhD Marion Procter, PhD Aron Goldhirsch, MD Evandro de Azambuja, MD et al. Show all authors Published:February 16, 2017
- 13. Trastuzumab Plus Adjuvant Chemotherapy for Human Epidermal Growth Factor Receptor 2-Positive Breast Cancer: Planned Joint Analysis of Overall Survival From NSABP B-31 and NCCTG N9831Journal of Clinical Oncology 2014 32:33, 3744-3752
- 14. Joensuu H, Kellokumpu-Lehtinen PL, Bono P, et al. Adjuvant docetaxel vinorelbine with or withouttrastuzumab for breast cancer. N Engl J Med 2006;354(4):809-820.

- 15. Slamon D, Eiermann W, Robert N, et al. Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med 2011;365(14):1273–1283.
- concurrent trastuzumab in adjuvant chemotherapy for breast cancer. J Clin Oncol 2011;29(34):4491–4497.
- Slamon DJ, Godolphin W, Jones LA, et al. Studies of the 17. Burstein HJ, Piccart-Gebhart MJ, Perez EA, et al. Choosing the best trastuzumab-based adjuvant chemotherapy regimen: should we abandon anthracyclines? J Clin Oncol 2012;30(18):2179–2182.
 - Slamon DJ, Eiermann W, Robert NJ, et al. Ten year followup of the BCIRG-006 trial comparing doxorubicin plus cyclophosphamide followed by docetaxel (AC->T) with doxorubicin plus cyclophosphamide followed docetaxeland trastuzumab (AC->TH) with docetaxel, carboplatin and trastuzumab (TCH) in HER2+ early breast cancerpatients. Paper presented at: San Antonio Breast Cancer Symposium; December 2015; San Antonio, TX.
 - Wolff AC, Hammond ME, Hicks DG, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J ClinOncol 2013; 31: 3997–4013.
- association between HER-2/neu and steroid hormone 20. Luca Gianni, Tadeusz Pienkowski, Young-Hyuck Im, Ling-Ming Tseng, Mei-Ching Liu, Ana Lluch,et al.Journal of Clinical Oncology 2015 33:15_suppl, 505-505.
- Vogel CL, Cobleigh MA, Tripathy D, et al. Efficacy and 21. Advani P, Cornell L, Chumsri S, Moreno-Aspitia A. Dual HER2 blockade in the neoadjuvant and adjuvant treatment of HER2-positive breast cancer. Breast Cancer (Dove Med Press). 2015;7:321-335. Published 2015 Sep 22.
 - Survival outcomes of the NeoALTTO study: Updated results of a randomized multicenter phase III neoadjuvant trial.Jens Huober, Eileen McCormick Holmes, Jose Baselga, Evandro De Azambuja, Michael Untch, Debora Fumagalli,et al.Journal Clinical Oncology 2017 35:15_suppl, 512-512.
 - Smith, M. Procter, R.D. Gelber, et al.2-year follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer: a randomized controlled trial Lancet, 369 (2007), pp. 29-36
 - of pertuzumab and trastuzumab for HER2-positive metastatic breast cancer. Clin Breast Cancer. 2010 Dec 1;10(6):489-91.
 - 25. Pandit R, Chen L, Götz J. The blood-brain barrier: Physiology and strategies for drug delivery. Advanced drug delivery reviews. 2020 Jan 1;165:1-4.